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Overview

This project aims to study how firms respond to tax audits.

Of particular interest is to understand whether spillover effects exist.
e.g., “Do firms that are not audited respond to tax audits on other firms?”

We have the ability to run an experiment in collaboration with experts.
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Experimental study

Our population is virtually the totality of businesses in a country of South
America:

We will run an experiment in collaboration with experts and the official
Tax Authority. Randomize only 2,000 tax audit notices (treatment).
Data: Aggregate reported sales and purchases from both individual firms
and interfirm transactions.

Pilot study (Dec-22) Wave I (Jun-23) Wave II (Jul-23)
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Intervention

“According to the results of cross-referencing and tax analysis derived from Big
Data, this inconsistency represents an irregularity in the amount of sales or
registered fiscal debit adjustments by you.”
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Setup

We have N firms indexed by i = 1, . . .. N ≈ 478, 000.

C = (Cij): Cij = total purchases ($) of firm i (buyer) from firm j
(seller).

- Reported by i (buyer). Large N ×N matrix.

V = (Vij). Same as C but from seller’s perspective.
S = (Sj): Sj = total sales ($) of firm j.

- Reported by j (self-report).

From these we define the (symmetric) inter-firm network :

’A = C + V’.

Ni = {j : Aij = 1} , neighborhood of i;
degi =

∑
j Aij , degree of i; etc.

These are sensitive, anonymized tax data. No covariates.
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Summary statistics

∼0.5m nodes (businesses)
∼8.7m edges (transactions between pairs of firms); density = 0.0076%
Degree distribution: (Q1, Q2, Q3,max) = (5, 10, 21, 45000)

Eigenvalue centrality has roughly a linear relationship with degree (as
expected).
However, we also observe significant heterogeneity.
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Interfirm Network

Figure: Main subgraphs of the firm transaction network
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Primary outcome

In a perfect world, there is complete agreement between all account books.
No agreement indicates possible tax evasion.

Outcomes are denoted by Y = (Yj) where

Yj := Yj(C, S) =
∑
i

Cij − Sj .

= total purchases reported from buyers of j − sales reported from j. (1)

A firm j has an incentive to under-state its Sj (less revenue → less tax).
A firm i has an incentive to over-state its Ci∗ (more expenses → less tax).

Both lead to Y > 0.

A firm is eligible for treatment if Y pre
j > 0 measured in a pre-2022 tax survey.
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Approaches to experiment design on networks

Typically, researchers aim to split the network into ‘clusters’, and
randomize treatment within clusters with different intensities; e.g.,
two-stage designs, saturation designs.(Hudgens and Halloran, 2008),
(Crepon et al, 2013), (Ugander et al, 2013), (Bakshy et al, 2015), (Eckles et
al, 2017).

Optimal design is heavily model-based: Assume a model for Y wrt
treatment, covariates, then minimize standard error of estimators
(“D-optimality”); e.g., see (Baird et al, 2017).
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Our approach

Our network is too big for common clustering algorithms.
More importantly, we want to be model-agnostic.

To that end, we first build procedures (randomization tests) that are
finite-sample exact; i.e., valid for any finite n > 0.

Then, use the procedures to inform the design space Pθ. Use models only to
construct alternative hypotheses (power calculations).
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Causality through Potential Outcomes

We adopt the potential outcomes framework (Neyman, 1923), (Rubin, 1974).

For any fixed treatment vector d ∈ {0, 1}N , the potential outcome of unit j is

Yj(d) := Yj(C(d), S(d)) =
∑
i

Cij(d)− Sj(d).

The randomized treatment vector is denoted D ∈ {0, 1}N , D ∼ P (D).
(assume P known for now, will discuss design of P soon)

Dj = 1 if firm j receives tax audit notice.

Only one potential outcome is observed: Y = Y (D). All other
treatment/outcomes remain‘ counterfactual (D′, Y ′).

Potential outcomes are useful to (i) define the causal problem, (ii) separate the problem
from the model, (iii) clarify assumptions.
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Interference

In classical causal inference, there are only two potential outcomes for
control-treatment: “Yj(0), Yj(1)”.

This is unrealistic here. In fact, a key problem is to estimate spillover effects.

Assumption (“neighborhood interference”)

For any treatment vector d ∈ {0, 1}N and firm j

Yj(d) := Yj( dj︸︷︷︸
own

, dNj︸︷︷︸
neighbors

).

That is, the treatment of k-hops away neighbors (k > 1) does not matter for
the potential outcome of any firm.

Known as “effective treatment” or “exposure mapping” (Manski, 2013), (T.
and Kao, 2013) (Aronow and Samii, 2017).
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Null hypotheses

Potential outcomes are useful to express the scientific questions:

(a) “Does the treatment has any effect whatsoever?”

Hglobal
0 : Yj(d) = Yj(d

′), for all j, d, d′. (2)

(b) “Is there a direct effect?”

Hdir
0 : Yj(1, dNj ) = Yj(0, d

′
Nj

), for all j, d, d′ for which dNj = d′Nj
. (3)

(c) “Is there a spillover effect?”

Hspill
0 : Yj(0, dNj

) = Yj(0, d
′
Nj

), for all j, d, d′. (4)
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Fisherian randomization tests of causal effects

Design priority to use randomization tests. Here is a quick recap of this
method (Fisher, 1935).

Consider the global null

Hglobal
0 : Yj(d) = Yj(d

′), for all j, d, d′. (5)

1 Choose test statistic : T = t(Y,D,A).
2 Randomization p-value based on resampled D′ ∼ P iid:

pval = E[t(Y,D′,A) > T ], D′ ∼ P. (6)

Under the null, Y ′ = Y . So, t(Y,D′,A)
H0= t(Y ′, D′,A)

d
= T by design.

The key condition is that we can impute all counterfactual outcomes under the
null hypothesis. The “null is sharp”.
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Why Fisherian Randomization Tests (FRTs) ?

Unique advantages of FRTs:

Nonasymptotic. P-value is exact for any finite sample n > 0.
Model-agnostic. Valid for any t(·) and can use any complex model (e.g.,
regression, ML, network model, etc.)
Robust. Same answer under reasonable transformations of the data.
Inference. We can invert the tests for exact inference; c.f. “conformal
prediction” (same idea but for prediction intervals).

Main critique of FRT:

Usually test only “strong nulls” (important advances recently).
Cannot generalize out of sample.
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Randomization tests under interference

Under interference, it is not easy to test nulls such as Hmain
0 or Hspill

0 .

This is because these don’t imply Y ′ = Y for all units as before (i.e.,
non-sharp)

Recent literature suggests to condition on a subset of units / assignments
such that Y ′

S = YS holds for the subset S. (Aronow, 2012), (Athey et al,
2019), (Basse et al, 2019), (Puelz et al, 2022)

Just consider only keeping those “focal units” (in S) and discarding the rest.
Then, run standard FRT on the remaining data.
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Test for the direct effect: Illustration
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ẽ5

ne1

ne2
ne3

ne4

ne5
ne6

ne7

ne8

e1

e2
e3

ẽ4
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The focal units are included in the blue ellipse (ẽ4, ẽ5). These form an
anticlique. Our test for Hdir

0 simply permutes the treatment of these units.
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Experimental designs

These randomization tests assume the experiment design P is known.
We now discuss the design of P .

We have considered three types of designs:

1 Bernoulli design.

2 Cluster randomization (by firm degree).

3 “SplitGraph”. Our current design taking into account the particular
problem structure (e.g., anticliques).

We optimize each design under a fixed counterfactual model.
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Counterfactual models

For purchases:

C(d) = Diag(1 + β ∗ 1{w(d) = 1}+ ε)C(0)

- An untreated firm that is connected to a treated firm increases its
purchase reports by βj% compared to control (spillover)

For sales:
S(d) = Spre + d ∗ γ ∗ 1{Y pre > 0} ∗ Y pre + ε.

- A treated firm that misreported at baseline reduces its sales discrepancy
by γj% compared to control (direct).
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Bernoulli design

Bernoulli(p): Treatment P (Di = 1) = p independently for each firm i.

Clustered version: We first cluster the firms by different methods (e.g.,
Leiden algorithm). Within each cluster, we run a Bernoulli(p)
experiment.

Trade-off between testing for direct effects and testing for spillovers.

The “sweet spot” (through simulation) for the simple Bernoulli design was
roughly at p∗ = 20%.
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Power for direct effect
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Power for spillover effect
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“SplitGraph” — (Nt,m, p)

Our current design. It takes into account the test structure (e.g., using
anticliques for main effects).

Firms have a 2-dimensional type:

type = (degree, % connections to other eligibles).

For each type t we choose Nt such that
∑

t Nt = 2, 000 (constraint
from Tax Authority). See Table below.

For each type t, we calculate an anticlique via a greedy method. The
max size of the anticlique is controlled by a parameter (m).

We treat Ntp within the anticlique, and Nt(1− p) of the rest,
completely at random.

We optimize (Nt,m, p) via a random space filling design.
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Treatment schedule per type

type = (degree, % connections to other eligibles).

(Nt) =

out neutral in
small 900 (8.7%) 80 (5.0%) 99 (9.5%)

medium 750 (3.6%) 20 (3.2%) 15 (28.3%)
high 32 (1.9%) 0 0

very-high 4 (5.1%) 0 0

Row-type: degree quartile
Column-type: % connection to other eligibles.
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Model-assisted optimization

Consider perturbations N(a,b,c)
0 of original schedule N0 according to

N(a,b,c)
0 =

out neutral in
small 900 + 100a - 10c 80 + 10c 99

medium 750 -100a - 20b -10c 20 + 10c 15
high 32 + 20b 0 0

very-high 4 0 0

Idea is to follow a random space filling design:
1 Sample ak ∈ [−4, 4], bk ∈ [0, 10] and ck ∈ [0, 5], i.i.d. uniformly.
2 Simulate experiment and randomization test. Obtain test decision Fk.
3 Fit classification model Fk ∼ (ak, bk, ck).
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Model-assisted optimization

Logistic regression and classification trees largely agree on the following.

For direct effect:
(i) Preferable to have large anticlique sets (larger c is better) treated with

small/medium intensity.

For the spillover effect:
(i) Best to have small anticlique sets treated with high intensity.

Interactions between these two parameters (m, p) are important.1

(ii) Larger c is clearly worse. This means that we should not treat any
more “high-degree” firms. Baseline values (a=0, b=0) are fine.

1The best pairs are (m=1, p=0.7) or (m=5, p=0.8). These lead, respectively, to
increases of 22.8% and 20.5% in power.
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Concluding remarks

Randomization tests under interference need to target specific network
structures (e.g., anticliques).

Our experiment design takes that into account (“SplitGraph”).

Model-assisted optimization can be very useful. Flexible ML models can
be used in conjunction with space filling designs.

In general, there are many opportunities at the intersection of modern
ML/optimization and experiment design, especially in complex settings such
as causal inference in networks.
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