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Detecting periodicity (51 Pegasi b)

Detection of periodicity poses no challenges as it is a well-studied problem (Fisher,
1929) and (Siegel, 1980; Bolviken, 1983; Chiu, 1989). Details

Most methods rely on the periodogram peak, θ̂n = arg maxθ∈Θ An(θ).

How to use θ̂n for inference on θ∗ (true period)?
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Identification

A common mistake is to interpret detection of periodicity as θ∗ being “near θ̂n”.

This implicitly relies on standard asymptotics of the form
√
n(θ̂n − θ∗)→ N (0, ..)

However, these asymptotics break down even in the simple harmonic model.

1 Likelihood is irregular, non-smooth and multimodal⇒ no normality (of θ̂n).
2 Observation times are not iid⇒ no consistency.
3 Pernicious effects from “hyperparameters” (e.g., granularity of period space, Θ).

As such, “±” statistical statements for period estimators can be meaningless.

(Bayes could resolve these issues? I think they make things worse.. Details )
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Example 1: Synthetic data

Let ti = i+ 0.05Ui, i = 1, . . . , 100, and yi = 1.5 cos(2πti/
√
2) + εi, where

Ui ∼ Unif[−1, 1] and εi ∼ N(0, 1) i.i.d. So, θ∗ =
√
2 ≈ 1.414.

Figure: Left: Periodogram from one problematic dataset. Right: Sampling distribution of the
periodogram peak from the same model over 1,000 replications.
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Our method 1/2

Start with the test
H0 : θ? = θ0.

Fit model y(t) = fθ0(t) + e(t) and obtain f̂θ0 and ê (residuals). Compute our test
statistic ŝ (e.g., periodogram peak, but we use a variation).

Then, simulate data:

y(1)(t) = f̂θ0(t) + g(1) ∗ ê(t).

y(2)(t) = f̂θ0(t) + g(2) ∗ ê(t).
....

Here,
g(i) is a random transformation of the residuals (e.g., randomly flipping signs).
Each dataset produces a new value for the test statistic, s(i).

Then, the p-value for H0 is:

pval(θ0) = E(s(i) ≥ ŝ).
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Our method 2/2

1 Choose Θ, a grid of values that contains θ∗ w.p. 1. Pick a test statistic, sn.

2 For all θ0 ∈ Θ do: Set Θ̂1−α ← Θ̂1−α ∪ {θ0} if pval(θ0) > α.

3 Return Θ̂1−α as the 100(1− α)% confidence set of θ∗.

Advantages
Confidence set, not interval. Appropriate for identification.

Can accommodate complex error structure (through g(i)). Distribution-free.

No assumption on the test statistic. Not necessary to be “well-behaved” (e.g., consistent or normal).

No assumption on the observation design or spacings.

Inference conditional on hyperparameters (e.g., Θ).

Challenges
Power: Is the method conservative?

Choice of test statistic. Details

Computational challenges (requires computation over entire Θ). Details
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Example 1: Synthetic data — What does our method
produce?

θ0 p-value Θ̂0.95 Θ̂0.99

0.1752 0.00 no no
0.1890 0.00 no no
0.2124 0.00 no no
0.2330 0.00 no no
0.2696 0.00 no no
0.3036 0.00 no no
0.3693 0.00 no no
0.4362 0.00 no no
0.5857 0.03 no yes
0.7737 0.17 yes yes
1.4130 0.48 yes yes
3.4175 1.00 yes yes
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51 Pegasi b (Mayor and Queloz, 1995)

θ0 p-value Θ̂0.95 Θ̂0.99

0.3085 0.00 no no
0.5662 0.00 no no
0.8069 0.00 no no
0.8089 0.00 no no
0.8295 0.00 no no
1.3047 0.00 no no
1.3095 0.00 no no
3.7033 0.00 no no
4.1807 0.00 no no
4.2311 1.00 yes yes
4.2821 0.00 no no
4.9331 0.00 no no

Left: Periodogram of radial velocity on exoplanet “51Pegb”.

We see that there are no identification issues as the 4.23-day signal is the only one
accepted in the confidence sets.

9 / 13



Gliese 436 b (Butler et al., 2004)

θ0 p-value Θ̂0.95 Θ̂0.99

0.4200 0.00 no no
0.6155 0.00 no no
0.7067 0.00 no no
0.7438 0.00 no no
1.3641 0.00 no no
1.5187 0.00 no no
1.6013 0.00 no no
1.6086 0.00 no no
1.7008 0.00 no no
2.4103 0.00 no no
2.6441 1.00 yes yes
3.7092 0.0000 no no

Left: Periodogram of radial velocity on exoplanet GJ436b.

We see that there are no identification issues as the 2.64-day signal is the only one
accepted in the confidence sets.
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α Centauri B (Dumusque et.al., 2012)

θ0 p-value Θ̂0.95 Θ̂0.99

0.7622 0.0705 yes yes
0.8882 0.0271 no yes
1.0086 0.0174 no yes
1.0678 0.0079 no no
2.0292 0.0122 no yes
3.2074 0.0163 no yes
3.2371 1.0000 yes yes
3.2670 0.0178 no yes
7.9394 0.0116 no yes
8.1169 0.0175 no yes

52.2242 0.0121 no yes
61.1334 0.0226 no yes

Left: Periodogram of radial velocity on candidate exoplanet orbiting α Centauri B.

We see that there are severe identification issues as several signals other than the
periodogram peak are accepted in the confidence sets.
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Proxima Centauri (Anglada-Escude et.al., 2016)

θ0 p-value Θ̂0.95 Θ̂0.99

0.1106 0.0007 no no
0.3355 0.0022 no no
0.3552 0.0055 no no
0.4778 0.0025 no no
0.5512 0.0047 no no
0.7532 0.0052 no no
0.8412 0.0059 no no
0.9164 0.0173 no yes
0.9266 0.0005 no no
1.0957 0.0080 no no

11.1739 1.0000 yes yes
12.8769 0.0006 no no

Left: Periodogram of radial velocity on candidate exoplanet Proxima Centauri b.

We see that there are no severe identification issues. The detection appears to be
robust except for a nuisance signal at 0.9164 days.

Could optimize observation design to get rid of the nuisance signal.
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Thank You.

Toulis, P. and Bean, J. (2021). Randomization Inference of Periodicity in Unequally
Spaced Time Series with Application to Exoplanet Detection (submitted)
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Observation designs

The importance of observation times in identifying a periodic signal is well
understood (Feigelson and Babu, 2012; VanderPlas, 2018; Ivezic et al., 2014).

Surprisingly, there is little (to none) work in the statistical aspects of careful
observation design.

We propose to synthesize data under alternative designs, and then pick the design
that yields “ε-identification”; i.e., Θ̂1−α only contains values ε-away to a candidate
signal θcand

∗ .

We address two questions:

1 How much to randomize observation times for ε-identification?

2 How many more observations to make for ε-identification?
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Design (A) Design (B)

(Candidate) Exoplanet
randomness needed

for identification (best δ)
± hrs.

#additional obs. needed

for identification (best n′ − n)

51 Pegasi b 0 0 0

Gliese 436 b 0 0 0

α Centauri B 0.18 4.32 137

Proxima Centauri 0.06 1.44 17

Table: Observation designs (A) and (B) to achieve identification in the exoplanet applications. Design (A)
introduces randomness in the observation times, while design (B) introduces additional observations.

We see that 51Pegb and GJ436b require no improvement in the observation times.

For α Centauri B: We need an additional variation of±0.18 days around the actual
observation times (i.e.,±4.32 hrs./observation). Alternatively, we need 137 new
observations with a random variation of±15 mins./observation.

For Proxima Centauri: We need an additional variation of±0.06 days (i.e.,±1.44
hrs./observation) on the actual observation times. Alternatively, we only need an 17
additional observations with a random variation of±15 mins./observation. -3 / 13



Detecting periodicity — Periodogram peak

Main method developed by Fisher (1929). Power refined by (Siegel, 1980; Bolviken,
1983; Chiu, 1989), and extended to more general hypotheses ( Juditsky et al., 2015) and
sparse alternatives (Cai et al., 2016).

Most methods rely on the periodogram peak, θ̂n = arg maxθ∈Θ An(θ).

Idea is to reject the null of no periodicity when the peak exceeds a threshold (“false
alarm probability”). See also (Baluev, 2008, 2013; Delisle et al., 2020; Nemec and Nemec,
1985) for adaptations in astronomy.

Under normality assumptions, each An(θ) is associated to a χ2
2, and so the

distribution of θ̂n (under the null) can be approximated via extreme value theory.

Detection of periodicity is generally robust and poses no major challenges.
Go back
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Bayesian methods?

We might expect that a Bayesian approach could address these issues.

However, a Bayesian approach also faces problems.

(i) Prior specification: uniform priors give preference to parameter regions that
not only have high likelihood but are also wide. This sweeps the identification
problem “under the rug”; see also (Hall and Yin, 2003, Section 1).

(ii) Posterior summarization is challenging when the likelihood is multimodal and
non-smooth. Also affected by hyperparameters (e.g., Θ.)

(iii) Model selection: Bayes factors may strongly depend on features that are
esoteric to the specified models. See also (Gelman and Yao, 2020, Sections 3 and 6).

Go back
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Structured inference

Suppose we want to estimate parameter θ∗ ∈ Θ through a statistic S.

Typical asymptotic approach for inference is to derive a law
√
n(S − θ∗)→ ... and

then pivot to CIs. Relies on asymptotics and usually normality.

However, we can do finite-sample valid inference if we know that

gS d
= S,

for some transformation g, via inversion of randomization tests.

The simplest case is when we have access to f(S | θ), the distribution of S. Then, we
can build a finite-sample valid confidence set for θ∗ (cf. Neyman construction):

Construct 95% confidence set:

Θ̂ =

{
θ ∈ [0, 1]3 :

∑
s∈S

I{f(s|θ) ≤ f(sobs|θ)}f(s|θ) > 0.05

}
.

In words: “accept all θ for which there is at least 5% of the density mass of f(S|θ)
below f(sobs|θ)”. Outline or Global null 0 / 13



Comparison with standard methods

For standard methods:
Focus is on f(sobs|θ) as a function of θ (likelihood-centric).
Inference “happens around the mode”, θ̂ = arg maxθ f(sobs|θ). Tails of
likelihood are ignored.
The “hope” is that θ̂ is near θ0. Asymptotics and approximations are necessary.
Many problems (usually undetected) when #samples is small, likelihood is
multimodal, nonsmooth, modes are not separable, etc. (think of exoplanet
detection!).

For structured inference methods:
Focus is on f(S|θ) as a function of S or on invariances gS d

= S.
Inference “happens everywhere” in the parameter space. The likelihood value of
f(sobs|θ) only matters relatively to other values f(S|θ).
No asymptotics or approximations are necessary.
Finite sample guarantee: Works even when #samples is small, likelihood is
multimodal, nonsmooth etc.
Downside: requires computation over entire Θ and possible over S (sample
space). 1 / 13



Illustrative comparison

Go back or Covid-19 application
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Covid-19 serology model

We have two calibration studies and one main study:

observed values

S−
c = #positives in calibration study out of 401 true negatives s−c = 2;

S+
c = #positives in calibration study out of 197 true positives s+c = 178;

Sm = #positives in main study out of 3,330 trials sm = 50.

Assume:

pr(positive result|actual negative) = p [false positive rate]
pr(positive result|actual positive) = q [true positive rate]

# actual positives in main study
3, 330

= π [prevalence]. (1)

Parameter θ = (p, q, π) =∈ [0, 1]3, and statistic S = (S−
c , S+

c , Sm) ∈ S.

Key observation: We can calculate the density, f(S|θ), of the statistic exactly.
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Covid-19 serology model

Setup: θ = (p, q, π) = (FPR, TPR, prevalence), data S = (S−
c , S+

c , Sm).

Density of data statistic.

f(S|θ) = Bin(S−
c ; 401, p)︸ ︷︷ ︸

FP in calibration

· Bin(S+
c ; 197, q)︸ ︷︷ ︸

TP in calibration

·
∑
i

Bin(i;Nπ, q) · Bin(Sm − i;N −Nπ, p)︸ ︷︷ ︸
prob of Sm positives out of Nπ actual positives in main study

,

where Nπ = 3300π = #actual positives in main study.

� In the sample, we observe sobs = (2, 178, 50). How to do inference on θ?
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Illustration

Suppose θ0 = (p, q, π) = (1.5%, 100%, 0%). Then, f(S|θ0) looks as follows:

� We have to decide: Is θ0 plausible?
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Application: Santa Clara study

Visualization of (p, q, π) in Θ̂; dashed lines = empirical estimates of FPR, TPR;

Results: π = 0% is included; but [0.7-1.5%] is arguably more plausible. 6 / 13



Application: New York study

Results: Clear evidence for high prevalence. Go back 7 / 13



Discussion: Choice of test statistic

Procedure 1 is valid for any choice of the test statistic, sn.

However, power depends on how sensitive sn is in detecting violations of the null
hypothesis.

We choose sn(Y n, Tn) = An(θ̂n)−An(θ0), the difference between periodogram
values at the global peak peak and the null, θ0.

Fisher’s classical statistic is sn = maxθ∈Θ Ân(θ)/Ān, where
Ān = |Θ|−1

∑
θ An(θ).

Improvements using a trimmed mean in place of Ān have also been
suggested (Bolviken, 1983; Siegel, 1980; Damsleth and Spjotvoll, 1982). See also
(McSweeney, 2006) for numerical comparisons. Go back
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Discussion: Computation

The complexity of our method is, prima facie, O(|Θ|2 ·R · C), where C = time for
weighted least-squares.

e.g., for |Θ| = 104, R = 103, and C = 50µs an analysis on a conventional laptop of
a time series with 200 observation times takes a total of 1,388 hrs. of wall clock
time (approx. 58 days).

However, several reductions of computation time are possible.
1 Procedure 1 can be fully parallelized in step 3; e.g., with 100 nodes the wall

clock time thus drops to 14 hrs.

2 Again in step 3, there is no need to consider all values in Θ but only a
proportion; e.g., consider local peaks that are at least 20% as high as the global
peak. This leads to a complexity O(γ|Θ|2 ·R · C) with γ ∼ 0.1%-3%.

As such, the computation in the above example drops dramatically to approximately
30 mins. of wall clock time. Indeed, in our application, get up to R = 100, 000 and
still finish all analyses in a few hours using a cluster with 400 nodes. Go back
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Randomization Tests (Lehman and Romano, 2005)

Let D ∈ Rn be the data, and Gn a group of Rn × Rn transformations.
We are testing some H0 under which:

D
d

= gD, for all g ∈ Gn.

Define a test statistic Tn = tn(D) and TD = {tn(gD) : g ∈ Gn}. Then,

Tn | TD = Uniform.

To test H0, we could take the p-value of Tn wrt to TD .

∗ This test is (i) exact in finite samples and (ii) works for any choice of Tn.

Go back
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Error invariance

Assumption: For any observation times Tn = {t1, . . . , tn}, with n finite, there
exists an algebraic group Gn of n× n matrices such that

g · εn d
= εn | T n (g ∈ Gn). (A2)

To keep things simple, we assume that Gn = [±]n×n, the set of n× n diagonal
matrices with±1 in the diagonal.

As such, our inference works with any symmetric distribution of independent errors
beyond just normal (Gaussian) as frequently assumed in practice.

This formulation follows the framework of randomization tests (Lehmann and
Romano, 2006) where testing is based on structural rather than analytical assumptions.

Example of “structured inference”. Details Go back
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Non-parametric approach (1/2)

Define
Π(Tn; θ) = {π ∈ Sn : π(ti) ≡ ti(mod θ), i = 1, . . . , n}.

In words, Π(Tn; θ) is the set of permutations of (t1, . . . , tn) such that any time ti is mapped
only to an observation time that is equivalent to ti modulo θ.

We wish to test the following nonparametric null hypothesis of periodicity θ0:

Hnp
0 : yp(t′) = yp(t), for all t′, t such that t′ ≡ t(mod θ0). (2)

To test Hnp
0 we can adapt Procedure 1 as follows.

1 For all r = 1, . . . , R do:
(i) Sample π ∼ Unif

(
Π(Tn; θ0)

)
.

(ii) Generate synthetic outcome data Y n,(r) = π · Y n obtained by permuting the data Y n

according to π while observation times, Tn , are fixed.
2 Using the samples from 2(ii), calculate the p-value, say pval(θ0), as in (??), and reject if the p-value is

less than α.

Theorem

Suppose that Assumptions (A1) and (A2) hold with Gn = Π(Tn; θ0). Then, the p-value from
Procedure 2 is exact underHnp

0 conditionally on the observation times, that is,

pr {pval(θ0) ≤ α | Hnp
0 , Tn} = α.
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Non-parametric approach (2/2)

An alternative approach would be to use the nonparametric estimators of θ∗
developed by (Hall et al., 2000); (Hall and Li, 2006); (Hall, 2008) together with a variation
of Procedure 1 or Procedure 2.

Both these procedures do not require regularity conditions on the observation times
but only a consistent estimator for the periodic component, yp. We leave these
directions for future work. Go back
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