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Introduction

Standard causal inference assumes no interference;
i.e., a unit’s treatment cannot affect other units.

This describes a simple, static world.

In many interesting problems, units interact in a complex way.
—spillovers, peer effects, contagion, equilibrium effects, etc.

Pervasive in most social studies.

New methods and tools are needed. Many applications:
e.g., policy making, marketplace algorithms, climate science, healthcare.
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Overview

Many current approaches tend to be heavily model-based.

In complex domains, this causes problems with inference and even with
identification (e.g., “Perils of peer effects” by J. Angrist)

Randomization tests are nonparametric procedures that are
model-agnostic and finite-sample exact.

However, they are limited in scope.

A lot of recent research work in extending the scope of randomization
tests to complex domains. I will present such a line of work today.
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Motivation: Peer effects (Li et al, 2019)

Consider an experiment where students in a Chinese university are
randomly assigned into dorm rooms.
Each student has a binary attribute depending on whether they
passed an entrance exam (Ai = 1) known as Gaokao.

Is there an effect on academic outcome of being roommates with a
Gaokao student?
Can we test this via permutations?

4 / 27



Spillovers in a large interfirm network
In an ongoing field experiment — with M Best, F Grosset
(Columbia) — we need to study spillover effects between firms from
tax audit notices.

This is a highly complex setting with > 400,000 units, 8 million
edges (firm connections).

Fast procedures is a requirement, not a luxury!
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Setup

Units i = 1, 2 . . . , N .
L = (L1, . . . , LN ) — room (label) assignment
A = (A1, . . . , AN ) — binary attributes.
Y = (Y1, . . . , YN ) ∈ RN — outcomes (e.g., grade improvement)
Will use (Y∗,L∗) for counterfactual outcomes-treatments.

Moreover,
Yi(`) — potential outcome of i under room assignment `.
P (L) is known and under our control (experimental study).
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No Interference

In classical causal inference, every unit i has only two potential
outcomes, namely “Yi(0), Yi(1)” for control and treatment,
respectively.

However, in many problems there is interference.

In our setting, a unit is exposed to “something more” than just a
room assignment, perhaps a sum effect from the attributes of its
roommates, and/or neighors, etc.

Think also of a vaccine trial. A control unit (unvaccinated) is still
“protected” by treated units (vaccinated) in its proximity.
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Effective treatments

Model interference as receiving a combined treatment exposure :

Wi = wi(L) ∈ W.

Examples:
� Wi =

∑
j 6=i Aj1(Li = Lj) — no. Gaokao roommates.

� Wi =% of Gaokao roommates; etc.

Although not necessary, it is useful to think that the exposure is the
“effective treatment” (Manski, 2013); i.e.,

Assumption

Yi(`) = Yi(`
′) for all `, `′, i if Wi = W ′

i .

Notation: Under the assumption, we can use Y ω
i (w) to denote

potential outcomes under L that generates exposure Wi = w.
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Hypotheses under interference

A large class of hypotheses under interference may be expressed as (main
focus of this talk):

H0 : Y ω
i (w) = Y ω

i (w′) for all i, and w,w′ ∈ W0 ⊆ W.

(Manski, 2009), (Aronow, 2012), (T. and Kao, 2013), (Bowers et al., 2013),

(Athey et al., 2019), Basse et al, 2019), (Puelz et al, 2021).

e.g., W0 = { 0, 1 } whereas W = {0, 1, . . .}. That is, “no difference
in outcomes from having 0 or 1 Gaokao roommate”.

Testing such hypotheses via randomization tests is challenging,
however. Naive randomization / permutation can fail.
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Review: Fisher’s Randomization Test

Let’s start with a simple problem.

When W0 = W, then all exposures give identical outcomes under the
null. This is equivalent to the global null of no effect:

H0 : Y ω
i (w) = Y ω

i (w′) for all w,w′, i.

This can be tested through Fisher’s randomization test (Fisher, 1935),

1 Calculate test statistic, T = t(W,Y); e.g., regression coefficient
2 pval = E[t(W∗,Y) > T ], W∗ = w(L∗),L∗ ∼ P .

♠ Works because t(W∗,Y)
H0= t(W∗,Y∗)

d
= T .
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An assessment of FRT

Main advantages:

The test is exact in finite samples. No asymptotics.
Not necessary to have correct Y -model specification.
The test is robust. Same answer under transformations of Y .

Common criticism:

Can only test “strong” hypotheses. This is changing though. (This
talk. Also, a lot of related research activity recently).
Cannot generalize to population.

* How can we extend this to testing for spillovers?
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FRT problems under interference

For testing H0 : Y ω
i (0) = Y ω

i (1), suppose we naively resample L∗ in the
FRT as shown below:

Observed L

Resampled L∗

Under L we observed Y ω
i (0) for unit i.

Under L∗, the unit has outcome Y ω
i (2). But this outcome is

unknown even under the null hypothesis ( the “null is weak”).

? The test should employ a subset of units/assignments for which
imputation is possible. How?
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A recent development

Athey et al (2019), Basse et al (2019) recently proposed a general approach
to apply FRTs under interference.

Let U = (U1, . . . , UN ) ∈ {0, 1}N denote a subset of units.

Then, the idea is to run FRT on the subset of these focal units:

(Yi,Wi, .. : Ui = 1)

under the following requirements:

1 The potential outcomes of all focal units should be imputable under
the null, H0.

2 (optional?) The resulting conditional randomization test should be
easy to implement.
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A general procedure

Specifically:
1 P (U) ∼ Unif; i.e., pick focal units uniformly at random.
2 Enumerate:

WU =
{

W′ : Y ω
i (W ′

i ) imputable under H0 for all i with Ui = 1.
}

3 Test statistic should depend only on data from focals: e.g.,
Yi ∼ Wi +Xi + ... (i : Ui = 1).

4 Run FRT by resampling from:
P (W∗ | U) ∝ 1(W∗ ∈ WU )P (W∗). (1)

Uniform P (U) is limiting — Basse et al (2019) extended to P (U | Z).
Constructing WU is challenging. Puelz et al (2021) developed a method
to automate it, but still requires computation.
(this talk): Distribution (1) does not generally imply a permutation test.
Such tests are ideal for computation.
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Permutation test for spillovers?

H0 : Y ω
i (w1) = Y ω

i (w2), with w1 = 0 and w2 = 1.

This approach requires enumerating all assignments for which the
focal units are exposed to {w1,w2}. This grows exponentially in N .

Couldn’t we just run a permutation test between Y and W on the
focal units shown above?
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Naive permutation fails

Figure: square=Gaokao student; circle = non-Gaokao

In this example, we permute the exposures of units 4 and 5.
However, the resulting W′ is invalid. It cannot be generated from
the design since it would require that 1,2, and 5 (Gaokao students)
all have exactly one Gaokao roommate.
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The problem, in summary

To summarize:

Room assignment L according to known design, P (L).

Eff. treatment due to interference: W = w(L) = (W1, . . . ,WN ).
But w() can be arbitrary! (user-defined)

Generalized SUTVA: Yi(L) = Y ω
i (Wi).

Goal is to test H0 : Y ω
i (w) = Y ω

i (w′) for all w,w′ ∈ W0.

? Can we test H0 via permutations on (a subvector of) W?
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Main theorem

Theorem (informal)
Let U = u(L) be the focal selection function. Let SA,U be the permutation
subgroup that leaves A (attributes) and U (focals) unchanged. Suppose:

(a) P (L) = P (πL) for all π ∈ SA,U .
(b) w(L) is equivariant with respect to SA,U ; i.e., w(πL) = πw(L).
(c) u(L) is equivariant with respect to SA,U .

Then, W is uniformly distributed within an orbit generated by SA,U .

The theorem shows that the procedure that permutes the exposures
of focal units stratified by attribute (i.e., permutations in SA,U ) is
finite-sample valid.
Note the “interaction” between (a) the design, (b) the exposure
mapping, and (c) the conditioning (focal selection).
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Proof sketch

Let O = {πWobs : π ∈ SA,U} = orbit generated by observed exposure.
Goal is to show that W | U is uniform in O (implies permutation test!)

Then,

P (W ∈ O,U | πL) = 1{w(πL) ∈ O} 1{U = u(πL)}
= 1{πw(L) ∈ O} 1{U = πu(L)} conditions (b),(c)

= 1{w(L) ∈ O} 1{π−1U = u(L)} orbit property

= 1{w(L) ∈ O} 1{U = u(L)} π−1U = U since π ∈ SA,U

= P (W ∈ O,U | L)

From Bayes and condition (a), this implies that

P (πL | W ∈ O,U) = P (L | W ∈ O,U).

That is, the design “maintains” its invariance even conditional on
the focals within the subspace SA,U .
Equivariance of w(L) then implies the theorem.
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Application of theory — condition (b)

As exposure we defined

wi(L) = f({Aj : Lj = Li, j 6= i}) (for some known f).

Then, w(L) satisfies equivariance (b).

To see this, if we swap the rooms of i, k (with Ai = Ak), then the
exposures of i, k are transposed but all other exposures are unchanged.
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Application of theory — condition (c)

Suppose we define

U = u(L) = 1{w(L) ∈ W0};

i.e., “Focus on units that are exposed to the null exposure levels.”

Then, u(L) satisfies equivariance (c).

To see this:

u(πL) = 1{w(πL) ∈ W0} = 1{πw(L) ∈ W0} = π1{w(L) ∈ W0} = πu(L).
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Condition (a): Design symmetry

The last condition is P (πL) = P (L). This is very mild under reasonable
randomized designs; e.g.,

Completely randomized design with a fixed number of units assigned
to each room.
Stratified randomized design with a fixed number of units assigned
to each pair (room, attribute).
... etc
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Application: (Cai and Szeidl,2017)

Cai and Szeidl (2017) wanted to study the effect of business
networks on firm performance.

They randomized CEOs of various firms into working groups that
met monthly for a year, and then tracked various firm performance
metrics.

The design was fairly complex (1,323 firms), but units were
exchangeable given their size, sector, and location.

Here, the salient attribute is 3-dim, Ai = (sizei, sectori, regioni).
Our methodology can still be applied.
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Analysis: Heterogeneity in peer effects

An interesting feature of our method is that it allows analysis of
heterogeneous peer effects. This can be done via conditional FRTs
stratified by firm types.

Cai and Szeidl (2017) also studied heterogeneity but in “direct
effects”. They showed that larger firms benefited more from the
meetings.

Our analysis complements this picture by showing that the impact
of larger peers was concentrated mainly among small service firms.

Regression specifications, such as (Cai and Szeidl, 2017), cannot
easily capture peer effect heterogeneity due to model saturation.
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Randomization test results
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Concluding remarks

Randomization tests are robust and finite-sample exact. They can
(and should) be extended to problems with interference.
This extension is made possible by clever conditioning procedures.

However, conditional FRTs are computationally demanding.

Permutation tests are computationally simple, but conditional FRTs
are not always permutation tests.

We given sufficient theoretical conditions to make the connection.
But, are these conditions necessary?

What about other designs? (e.g., two-stage, cluster)
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Thank you!

(*) Basse, Ding, Feller, Toulis “Randomization tests for group
formation experiments” , (R&R, 2023)

Puelz, Basse, Feller, Toulis “A graph-theoretic approach to
randomization tests of causal effects under interference” , (JRSS-B,
2021)

Basse, Feller, Toulis, “Randomization tests of causal effects under
interference” (Biometrika, 2019)
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