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Introduction

Standard causal inference assumes no interference;
i.e., a unit’s treatment cannot affect other units.

This describes a simple, static world.

In many interesting problems, units interact in a complex way.
e.g., spillovers, peer effects, contagion, equilibrium effects.

Pervasive in most social studies.

New methods and tools are needed. Many applications:
e.g., policy making, marketplace algorithms, climate science, healthcare.
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Some applications

Peer effects in households (Basse et al, 2019)

Crime spillovers in a city (Puelz et al, 2021)

Peer effects in dorms (this talk) (Basse et al, 2023+)

Tax audit spillovers across firms (ongoing)

The tax application, in particular, is a complex and sensitive setting
with > 400,000 units sharing 10mil. connections.
Procedures that are fast and finite-sample valid are highly desirable.
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State-of-art

Current approaches tend to be heavily model-based.

In complex domains, this causes problems with inference and even with
identification (e.g., “Perils of peer effects” by J. Angrist).

Randomization tests are nonparametric procedures that are
model-agnostic and finite-sample exact.

However, they tend to be limited in scope.

A lot of recent research work in extending the scope of randomization
tests to complex domains. I will present such a line of work today.

Randomization-based and model-based methods can be synergetic.
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Motivation: Peer effects in uni dorms (Li et al, 2019)

Consider an experiment where students in a Chinese university are
randomly assigned into dorm rooms.
Each student has a binary attribute depending on whether they
passed an entrance exam (Ai = 1) known as Gaokao.

1 Is there an effect on academic outcomes from being roommates with
a Gaokao student?

2 Can we test this via simple permutations?
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More motivation: Interfirm relationships

Cai and Szeidl (2017, QJE) randomized CEOs into working groups
and tracked various firm performance metrics.

Complex design (multi-stage, ∼1,300 firms) but group formation
was exchangeable conditional on firm size, sector, and location.

Here, the salient attribute is 3-dim, Ai = (sizei, sectori, regioni).
Our methodology can still be applied. (coming later)
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Business applications

Randomized group formation is especially interesting for business and
management; e.g.,

Diffusion of business practices across random groupings of African
manufacturing firms (Fafchamps and Quinn, 2018).

Random groupings of freshmen at USAF Academy to ‘optimize’
academic performance (Carrell et al, 2013).

Peer effects in the workplace (Cornelissen et al, 2017).

Random groupings in professional golf tournaments (Guryan et al,
2009).
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Setup (Gaokao experiment)

Units (students) indexed by i = 1, 2 . . . , N .
K rooms of max size M + 1.
L = (L1, . . . , LN ) ∈ {1, . . . ,K}N , room assignment.
A = (A1, . . . , AN ) ∈ {0, 1}N , binary attributes.
Y = (Y1, . . . , YN ) ∈ RN , outcomes (e.g., grade improvement).
Will use (Y∗,L∗) for counterfactual outcomes/treatments.

Moreover,
P (L) is known and under our control (experimental study).
e.g., completely randomized given fixed room compositions.

Yi(`), potential outcome of i under room assignment `.

We make the typical consistency assumption: Yi = Yi(L) for every i.
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Potential outcome, Yi(`)

In classical causal inference (“Rubin Causal Model”), every unit i
has only two potential outcomes, namely “Yi(0), Yi(1)” for control
and treatment, respectively.

With “Yi(`)” we allow the treatment of other units to affect i’s
outcome. This is known as interference.

Under interference, a unit is exposed to “something more” than just
its own room assignment, perhaps a sum effect from the attributes
of its roommates, and/or neighbors, etc.

However, “Yi(`)” may take ostensibly KN possible values.

B We need to put some structure and reduce this space.
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Effective treatment

A common approach is to model interference on i through a
pre-defined function wi():

Wi = wi(L) ∈ W.

Potential outcomes are assumed to be a function of Wi :

Assumption 1.

Yi(`) = Yi(`
′) for all `, `′, i if wi(`) = wi(`

′).

Wi is the known as the treatment exposure; e.g., (Verbitsky and
Raudenbush, 2004), (Hong and Raudenbush, 2006), (T. and Kao, 2013),
(Aronow and Samii, 2017), (Athey et al, 2018), (Basse et al, 2019).

Also known as the effective treatment (Manski, 2013).

W may be arbitrary but it is typically much smaller than KN .
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Effective treatment — Examples

The definition of wi(·) usually depends on the domain and
subject-matter experts; e.g.,

� Wi =
∑

j 6=i Aj1{Li = Lj} = #of Gaokao roommates (this talk).
� Wi =% of Gaokao roommates.
� May depend on covariates, etc.

Notation: Under Assumption 1, we may use “Y ω
i (·)” to denote

potential outcomes in the “exposure space”:

Y ω
i (w) := Yi(L) where w = wi(L).
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Main hypothesis under interference

A large class of hypotheses under interference may be expressed as:

H0 : Y ω
i (w) = Y ω

i (w′) for all i and w,w′ ∈ W0 ⊆ W.

e.g., W0 = {0, 1} whereas W = {0, . . . ,M}. This suggests the null

H0 : Y ω
i (0) = Y ω

i (1), for all i.

That is, there is “no difference in outcomes from having 0 or 1
Gaokao roommate”.

For simplicity, we will focus on the special null above.
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Illustration

H0 : Y ω
i (0) = Y ω

i (1), for all i.

The null hypothesis implies that the outcomes of all units except 3
should be “similar”.

Testing the null, however, is challenging because it is defined in the
“exposure space”, not the “treatment space”.

Naive randomization/permutation can fail.
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Fisher’s Randomization Test

Let’s start with a simple problem.

If W0 = W then all exposures give identical outcomes under the null.
This is equivalent to the “sharp null” of no effect:

H0 : Y ω
i (0) = . . . = Y ω

i (M) for all i.

This can be tested through Fisher’s randomization test (Fisher, 1935),

1 Calculate test statistic, T = t(W,Y); e.g., regression coefficient, ML.
2 pval = E[t(W∗,Y) > T ], W∗ = w(L∗), L∗ ∼ P .

The p-value from FRT is finite-sample exact.
Proof. The null implies Y∗ = Y a.s. Thus, t(W∗,Y)

H0= t(W∗,Y∗)
d
= T .
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An assessment of FRT

Main advantages:

The test is exact in finite samples. No asymptotics.
Y -model may be misspecified.(affects power but not validity)
Robustness: Same answer under transformations of Y .

Common criticism:

Can only test “strong” hypotheses. (This talk. Also, a lot of related
research activity recently).
Cannot generalize to population.

B Can we use FRTs to test for spillovers?
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FRT problems under interference

Now, consider testing H0 : Y ω
i (0) = Y ω

i (1).
In the FRT, suppose we naively resample L∗ as shown below:

Observed L

Resampled L∗

Under L we observed outcome Y ω
i (0) for unit i.

Under L∗, the unit has outcome Y ω
i (2). But this outcome cannot

be imputed under the null hypothesis (the null is “weak”).
Thus, the standard FRT is invalid.
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A recent development

Recently, a general approach to apply FRTs under interference has been
put forward (Aronow, 2012); (Athey et al, 2018); (Basse et al, 2019):

Let U = (U1, . . . , UN ) ∈ {0, 1}N denote a subset of units.

Then, the idea is to run FRT on the subset of the focal units:

(Yi,Wi, .. : Ui = 1)

under the following requirements:

I The potential outcomes of all focal units should be imputable under
the null, H0.

II The resulting conditional randomization test should be easy to
implement. (Only implicit in prior work)
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A conditional FRT

Specifically:

1 P (U) ∼ Unif; i.e., pick focal units uniformly at random.

2 Enumerate:

WU =
{

W′ : Y ω
i (W ′

i ) imputable under H0 for all i with Ui = 1.
}

3 Define test statistic only on data from focals (Ui = 1).

4 Run a conditional FRT by resampling from:

P (W∗ | U) ∝ 1{W∗ ∈ WU}P (W∗). (1)

This construction satisfies Condition I of imputability (Step 2).

However, distribution (1) is usually very hard to sample from; cf. Puelz et
al (2021) connects this to graph clique decomposition (NP-hard).

In particular, (1) does not generally imply a permutation test.
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Permutation test for spillovers?

H0 : Y ω
i (0) = Y ω

i (1).

The conditional FRT requires enumerating all assignments for which
the focal units are exposed to {0, 1}. This grows exponentially in N .

Couldn’t we just run a permutation test between Y and W on the
focal units shown above?
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Naive permutation fails

In this example, we permute the exposures of units 4 and 5.

However, the resulting W∗ is invalid. It cannot be generated from
the design since it would require that 1,2, and 5 (Gaokao students)
all have exactly one Gaokao roommate.
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The problem, in summary

To summarize:

Room assignment L according to known design, P (L).

Eff. treatment due to interference: W = w(L) = (W1, . . . ,WN ).

H0 : Y ω
i (w) = Y ω

i (w′) for all w,w′ ∈ W0.

B Can we test H0 via permutations on (a subvector of) W?
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Main theorem

Theorem
Let U = u(L) be the focal selection function. Let SA,U be the permutation
subgroup that leaves A (attributes) and U (focals) unchanged. Suppose:

(a) P (L) = P (πL) for all π ∈ SA,U .
(b) w(L) is equivariant with respect to SA,U ; i.e., w(πL) = πw(L).
(c) u(L) is equivariant with respect to SA,U .

Then, W is uniformly distributed conditional on an orbit generated by SA,U .

The theorem shows that the procedure that permutes the exposures
of focal units stratified by attribute (i.e., permutations in SA,U ) is
finite-sample valid.
Note the “interaction” between (a) design, (b) exposure definition,
and (c) focal unit selection.
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Proof sketch

Let O = {πWobs : π ∈ SA,U} = orbit generated by observed exposure.
Goal is to show that W | U is uniform in O (implies permutation test!)

P (W ∈ O,U | πL) = ...

= 1{w(πL) ∈ O} 1{U = u(πL)} L fully determines W,U

= 1{πw(L) ∈ O} 1{U = πu(L)} equivariance conditions (b),(c)

= 1{w(L) ∈ O} 1{π−1U = u(L)} orbit property

= 1{w(L) ∈ O} 1{U = u(L)} π−1U = U since π ∈ SA,U

= P (W ∈ O,U | L).

From Bayes and condition (a), we obtain

P (πL | W ∈ O,U) = P (L | W ∈ O,U).

That is, the design “maintains” its invariance even conditional on
focal selection within the subspace SA,U .
Equivariance of w(L) then implies the theorem.
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Application of theory — Condition (b)

Recall that as exposure we use

wi(L) = f({Aj : Lj = Li, j 6= i}) (for some known f).

Then, w(L) satisfies equivariance (b).

To see this, if we swap the rooms of i, k (with Ai = Ak), then the
exposures of i, k are transposed but all other exposures are unchanged.
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Application of theory — Condition (c)

Suppose we simply define the focal units as:

U = u(L) = 1{w(L) ∈ W0};

i.e., “Focus on units that are exposed to the null exposure levels.”

Then, u(L) satisfies equivariance (c). To see this:

u(πL) = 1{w(πL) ∈ W0} = 1{πw(L) ∈ W0} = π1{w(L) ∈ W0} = πu(L).
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Condition (a): Design symmetry

The last condition is P (πL) = P (L). This is very mild under reasonable
randomized designs; e.g.,

Completely randomized design with a fixed number of units assigned
to each room.
Stratified randomized design with a fixed number of units assigned
to each pair (room, attribute).
... etc
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Re-analysis of (Li et al, 2019)

Hypothesis of no difference between “0 or 3 Gaokao roommates”
denoted as “H0,3

0 ”.

Also test within subgroups: (0)=non-Gaokao; (1)=Gaokao students.

Main difference with the design-based analysis of Li et al (2019) is
for the subgroup of Gaokao students (they find strong significance).

Could be explained by the asymptotic approximations in (Li et al,
2019) , which may be unwarranted given the small sample size (see
paper for simulation study).
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Re-analysis of (Cai and Szeidl, 2017)

The design randomized CEOs into working groups that met monthly
for a year, and then tracked various firm performance metrics.

The authors studied heterogeneity in “direct effects”. They showed
that larger firms benefited more from the meetings.

Our method can analyze heterogeneity in peer effects by testing the
global null within subgroups.

Regression specifications cannot easily capture peer effect
heterogeneity due to model saturation.
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Peer effects only on small service firms.
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Concluding remarks

Recently, conditional randomization tests have been devised to test
complex causal effects under interference.

However, conditional FRTs are computationally demanding.

Permutation tests are computationally simple, but conditional FRTs
are not always permutation tests.

We proved sufficient theoretical conditions to make the connection.
But, are these conditions necessary?

What about other designs? (e.g., two-stage, cluster)
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Thank you!

(*) Basse, Ding, Feller, T., “Randomization tests for group
formation experiments” (2023+, cond. accept, Econometrica)

Puelz, Basse, Feller, T., “A graph-theoretic approach to
randomization tests of causal effects under interference” (JRSSB,
2021)

Basse, Feller, T., “Randomization tests of causal effects under
interference” (Biometrika, 2019)
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