Randomization tests for peer effects in group formation experiments

Panos Toulis panos.toulis@chicagobooth.edu

Econometrics and Statistics University of Chicago, Booth School of Business

Wharton School, University of Pennsylvania, 2023

Introduction

Standard causal inference assumes no interference; i.e., a unit's treatment cannot affect other units.

This describes a simple, static world.

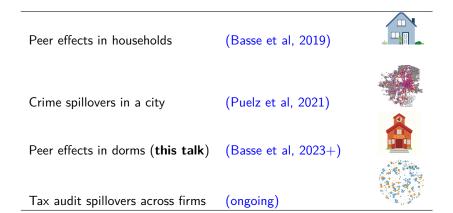
In many interesting problems, units interact in a complex way. e.g., spillovers, peer effects, contagion, equilibrium effects.

Pervasive in most social studies.

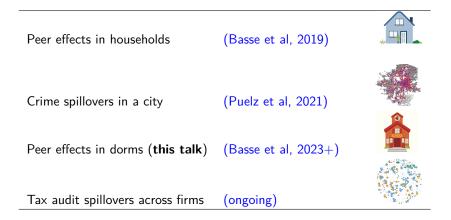
New methods and tools are needed. Many applications:

e.g., policy making, marketplace algorithms, climate science, healthcare.

Some applications



Some applications



- The tax application, in particular, is a complex and sensitive setting with > 400,000 units sharing 10mil. connections.
- Procedures that are fast and finite-sample valid are highly desirable.

State-of-art

Current approaches tend to be heavily model-based.

In complex domains, this causes problems with inference and even with identification (e.g., "Perils of peer effects" by J. Angrist).

Randomization tests are nonparametric procedures that are **model-agnostic** and **finite-sample exact**.

However, they tend to be limited in scope.

A lot of recent research work in extending the scope of randomization tests to complex domains. I will present such a line of work today.

Randomization-based and model-based methods can be synergetic.

Motivation: Peer effects in uni dorms (Li et al, 2019)

- Consider an experiment where students in a Chinese university are randomly assigned into dorm rooms.
- Each student has a binary attribute depending on whether they passed an entrance exam $(A_i = 1)$ known as *Gaokao*.

- Is there an effect on academic outcomes from being roommates with a Gaokao student?
- 2 Can we test this via simple permutations?

More motivation: Interfirm relationships

• Cai and Szeidl (2017, QJE) randomized CEOs into working groups and tracked various firm performance metrics.

- Complex design (multi-stage, \sim 1,300 firms) but group formation was exchangeable conditional on firm size, sector, and location.
- Here, the salient attribute is 3-dim, $A_i = (size_i, sector_i, region_i)$. Our methodology can still be applied. (coming later)

Randomized group formation is especially interesting for business and management; e.g.,

- Diffusion of business practices across random groupings of African manufacturing firms (Fafchamps and Quinn, 2018).
- Random groupings of freshmen at USAF Academy to 'optimize' academic performance (Carrell et al, 2013).
- Peer effects in the workplace (Cornelissen et al, 2017).
- Random groupings in professional golf tournaments (Guryan et al, 2009).

Setup (Gaokao experiment)

- Units (students) indexed by i = 1, 2..., N.
- K rooms of max size M + 1.
- $\mathbf{L} = (L_1, \dots, L_N) \in \{1, \dots, K\}^N$, room assignment.
- $\mathbf{A} = (A_1, \dots, A_N) \in \{0, 1\}^N$, binary attributes.
- $\mathbf{Y} = (Y_1, \dots, Y_N) \in \mathbb{R}^N$, outcomes (e.g., grade improvement).
- \bullet Will use $(\mathbf{Y}^*, \mathbf{L}^*)$ for *counterfactual* outcomes/treatments.

Moreover,

- P(L) is known and under our control (experimental study). e.g., completely randomized given fixed room compositions.
- $Y_i(\ell)$, potential outcome of *i* under room assignment ℓ .
- We make the typical consistency assumption: $Y_i = Y_i(\mathbf{L})$ for every *i*.

Potential outcome, $Y_i(\ell)$

- In classical causal inference ("Rubin Causal Model"), every unit i has only two potential outcomes, namely " $Y_i(0), Y_i(1)$ " for control and treatment, respectively.
- With " $Y_i(\ell)$ " we allow the treatment of other units to affect *i*'s outcome. This is known as **interference**.
- Under interference, a unit is exposed to "something more" than just its own room assignment, perhaps a sum effect from the attributes of its roommates, and/or neighbors, etc.
- However, " $Y_i(\ell)$ " may take ostensibly K^N possible values.

Potential outcome, $Y_i(\ell)$

- In classical causal inference ("Rubin Causal Model"), every unit i has only two potential outcomes, namely " $Y_i(0), Y_i(1)$ " for control and treatment, respectively.
- With " $Y_i(\ell)$ " we allow the treatment of other units to affect *i*'s outcome. This is known as **interference**.
- Under interference, a unit is exposed to "something more" than just its own room assignment, perhaps a sum effect from the attributes of its roommates, and/or neighbors, etc.
- However, " $Y_i(\ell)$ " may take ostensibly K^N possible values.

 \triangleright We need to put some structure and reduce this space.

Effective treatment

• A common approach is to model interference on i through a pre-defined function $w_i()$:

$$W_i = w_i(\mathbf{L}) \in \mathbb{W}.$$

Potential outcomes are assumed to be a function of W_i :

Assumption 1.

$$Y_i(\ell) = Y_i(\ell')$$
 for all ℓ, ℓ', i if $w_i(\ell) = w_i(\ell')$.

- W_i is the known as the *treatment exposure*; e.g., (Verbitsky and Raudenbush, 2004), (Hong and Raudenbush, 2006), (T. and Kao, 2013), (Aronow and Samii, 2017), (Athey et al, 2018), (Basse et al, 2019).
- Also known as the effective treatment (Manski, 2013).
- \mathbb{W} may be arbitrary but it is typically much smaller than K^N .

Effective treatment — Examples

- The definition of $w_i(\cdot)$ usually depends on the domain and subject-matter experts; e.g.,
 - $\square W_i = \sum_{j \neq i} A_j \mathbb{1}\{L_i = L_j\} = \# \text{of Gaokao roommates (this talk)}.$
 - \square $W_i = \%$ of Gaokao roommates.
 - □ May depend on covariates, etc.

Effective treatment — Examples

- The definition of $w_i(\cdot)$ usually depends on the domain and subject-matter experts; e.g.,
 - $\square W_i = \sum_{j \neq i} A_j \mathbb{1}\{L_i = L_j\} = \# \text{of Gaokao roommates (this talk)}.$
 - \square $W_i = \%$ of Gaokao roommates.
 - May depend on covariates, etc.
- Notation: Under Assumption 1, we may use " $Y_i^{\omega}(\cdot)$ " to denote potential outcomes in the "exposure space":

$$Y_i^{\omega}(\mathsf{w}) := Y_i(\mathsf{L}) \text{ where } \mathsf{w} = w_i(\mathsf{L}).$$

Main hypothesis under interference

A large class of hypotheses under interference may be expressed as:

 $H_0: Y_i^{\omega}(\mathsf{w}) = Y_i^{\omega}(\mathsf{w}') \text{ for all } i \text{ and } \mathsf{w}, \mathsf{w}' \in \mathbb{W}_0 \subseteq \mathbb{W}.$

Main hypothesis under interference

A large class of hypotheses under interference may be expressed as:

$$H_0: Y_i^{\omega}(\mathsf{w}) = Y_i^{\omega}(\mathsf{w}') \text{ for all } i \text{ and } \mathsf{w}, \mathsf{w}' \in \mathbb{W}_0 \subseteq \mathbb{W}.$$

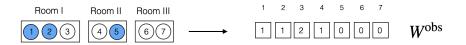
• e.g., $\mathbb{W}_0 = \{0,1\}$ whereas $\mathbb{W} = \{0,\ldots,\mathsf{M}\}$. This suggests the null $H_0: Y_i^\omega(0) = Y_i^\omega(1),$ for all i.

That is, there is "no difference in outcomes from having 0 or 1 Gaokao roommate".

• For simplicity, we will focus on the special null above.

Illustration

 $H_0: Y_i^{\omega}(\mathbf{0}) = Y_i^{\omega}(\mathbf{1}), \text{ for all } i.$



- The null hypothesis implies that the outcomes of all units except 3 should be "similar".
- Testing the null, however, is challenging because it is defined in the "exposure space", not the "treatment space".
- Naive randomization/permutation can fail.

Fisher's Randomization Test

Let's start with a simple problem.

If $\mathbb{W}_0 = \mathbb{W}$ then all exposures give identical outcomes under the null. This is equivalent to the "sharp null" of no effect:

$$H_0: Y_i^{\omega}(\mathbf{0}) = \ldots = Y_i^{\omega}(\mathsf{M})$$
 for all i .

Fisher's Randomization Test

Let's start with a simple problem.

If $\mathbb{W}_0 = \mathbb{W}$ then all exposures give identical outcomes under the null. This is equivalent to the "sharp null" of no effect:

$$H_0: Y_i^{\omega}(\mathbf{0}) = \ldots = Y_i^{\omega}(\mathsf{M})$$
 for all i .

This can be tested through Fisher's randomization test (Fisher, 1935),

- **()** Calculate test statistic, $T = t(\mathbf{W}, \mathbf{Y})$; e.g., regression coefficient, ML.
- **2** pval = $E[t(W^*, Y) > T], W^* = w(L^*), L^* \sim P.$

Fisher's Randomization Test

Let's start with a simple problem.

If $\mathbb{W}_0 = \mathbb{W}$ then all exposures give identical outcomes under the null. This is equivalent to the "sharp null" of no effect:

$$H_0: Y_i^{\omega}(\mathbf{0}) = \ldots = Y_i^{\omega}(\mathsf{M})$$
 for all i .

This can be tested through Fisher's randomization test (Fisher, 1935),

1 Calculate test statistic, $T = t(\mathbf{W}, \mathbf{Y})$; e.g., regression coefficient, ML. **2** pval = $\mathbf{E}[t(\mathbf{W}^*, \mathbf{Y}) > T]$, $\mathbf{W}^* = w(\mathbf{L}^*)$, $\mathbf{L}^* \sim P$.

The *p*-value from FRT is finite-sample exact. *Proof.* The null implies $\mathbf{Y}^* = \mathbf{Y}$ a.s. Thus, $t(\mathbf{W}^*, \mathbf{Y}) \stackrel{H_0}{=} t(\mathbf{W}^*, \mathbf{Y}^*) \stackrel{d}{=} T$.

An assessment of FRT

Main advantages:

- The test is exact in finite samples. No asymptotics.
- Y-model may be misspecified.(affects power but not validity)
- Robustness: Same answer under transformations of Y.

Common criticism:

- Can only test "strong" hypotheses. (This talk. Also, a lot of related research activity recently).
- Cannot generalize to population.

An assessment of FRT

Main advantages:

- The test is exact in finite samples. No asymptotics.
- Y-model may be misspecified.(affects power but not validity)
- Robustness: Same answer under transformations of Y.

Common criticism:

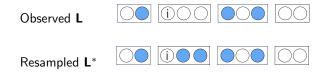
- Can only test "strong" hypotheses. (This talk. Also, a lot of related research activity recently).
- Cannot generalize to population.

 \triangleright Can we use FRTs to test for spillovers?

FRT problems under interference

Now, consider testing $H_0: Y_i^{\omega}(\mathbf{0}) = Y_i^{\omega}(\mathbf{1}).$

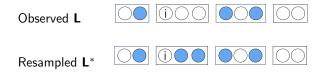
In the FRT, suppose we naively resample L^* as shown below:



FRT problems under interference

Now, consider testing $H_0: Y_i^{\omega}(0) = Y_i^{\omega}(1)$.

In the FRT, suppose we naively resample L^* as shown below:



- Under **L** we observed outcome $Y_i^{\omega}(0)$ for unit *i*.
- Under L*, the unit has outcome Y_i^ω(2). But this outcome cannot be imputed under the null hypothesis (the null is "weak"). Thus, the standard FRT is invalid.

A recent development

Recently, a general approach to apply FRTs under interference has been put forward (Aronow, 2012); (Athey et al, 2018); (Basse et al, 2019):

- Let $\mathbf{U} = (U_1, \dots, U_N) \in \{0, 1\}^N$ denote a subset of units.
- Then, the idea is to run FRT on the subset of the focal units:

$$(Y_i, W_i, \ldots : U_i = 1)$$

under the following requirements:

- **()** The potential outcomes of *all* focal units should be *imputable* under the null, H_0 .
- The resulting conditional randomization test should be easy to implement. (Only implicit in prior work)

A conditional FRT

Specifically:

- $\textbf{0} \ P(\textbf{U}) \sim \text{Unif; i.e., pick focal units uniformly at random. }$
- 2 Enumerate:

 $\mathcal{W}_U = \left\{ \mathbf{W}' : Y_i^{\omega}(W_i') \text{ imputable under } H_0 \text{ for all } i \text{ with } U_i = 1. \right\}$

- **3** Define test statistic only on data from focals $(U_i = 1)$.
- **4** Run a *conditional* FRT by resampling from:

$$P(\mathbf{W}^* \mid \mathbf{U}) \propto 1\{\mathbf{W}^* \in \mathcal{W}_U\} P(\mathbf{W}^*).$$
(1)

A conditional FRT

Specifically:

- $\textbf{0} \ P(\textbf{U}) \sim \text{Unif; i.e., pick focal units uniformly at random. }$
- 2 Enumerate:

 $\mathcal{W}_U = \left\{ \mathbf{W}' : Y_i^{\omega}(W_i') \text{ imputable under } H_0 \text{ for all } i \text{ with } U_i = 1. \right\}$

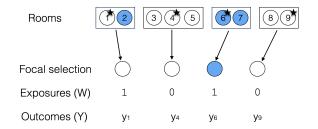
- **③** Define test statistic only on data from focals $(U_i = 1)$.
- **4** Run a *conditional* FRT by resampling from:

$$P(\mathbf{W}^* \mid \mathbf{U}) \propto 1\{\mathbf{W}^* \in \mathcal{W}_U\} P(\mathbf{W}^*).$$
(1)

- This construction satisfies Condition I of imputability (Step 2).
- However, distribution (1) is usually very hard to sample from; cf. Puelz et al (2021) connects this to graph clique decomposition (NP-hard).
- In particular, (1) does not generally imply a permutation test.

Permutation test for spillovers?

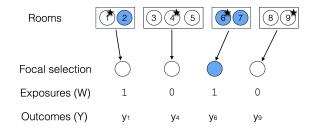
•
$$H_0: Y_i^{\omega}(\mathbf{0}) = Y_i^{\omega}(\mathbf{1}).$$



• The conditional FRT requires enumerating *all* assignments for which the focal units are exposed to {0,1}. This grows exponentially in N.

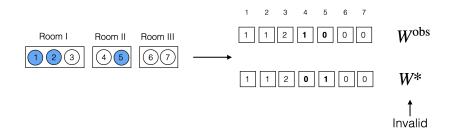
Permutation test for spillovers?

•
$$H_0: Y_i^{\omega}(\mathbf{0}) = Y_i^{\omega}(\mathbf{1}).$$



- The conditional FRT requires enumerating *all* assignments for which the focal units are exposed to {0,1}. This grows exponentially in N.
- Couldn't we just run a permutation test between Y and W on the focal units shown above?

Naive permutation fails



- In this example, we permute the exposures of units 4 and 5.
- However, the resulting **W**^{*} is invalid. It cannot be generated from the design since it would require that 1,2, and 5 (Gaokao students) all have exactly one Gaokao roommate.

The problem, in summary

To summarize:

- Room assignment **L** according to known design, $P(\mathbf{L})$.
- Eff. treatment due to interference: $\mathbf{W} = w(\mathbf{L}) = (W_1, \dots, W_N)$.

•
$$H_0: Y_i^{\omega}(\mathsf{w}) = Y_i^{\omega}(\mathsf{w}')$$
 for all $\mathsf{w}, \mathsf{w}' \in \mathbb{W}_0$.

 \triangleright Can we test H_0 via permutations on (a subvector of) **W**?

Main theorem

Theorem

Let U = u(L) be the focal selection function. Let $S_{A,U}$ be the permutation subgroup that leaves A (attributes) and U (focals) unchanged. Suppose:

a $P(\mathbf{L}) = P(\pi \mathbf{L})$ for all $\pi \in S_{A,U}$.

b w(L) is equivariant with respect to $S_{A,U}$; i.e., $w(\pi L) = \pi w(L)$.

c $u(\mathbf{L})$ is equivariant with respect to $S_{A,U}$.

Then, **W** is uniformly distributed conditional on an orbit generated by $S_{A,U}$.

[•] The theorem shows that the procedure that permutes the exposures of focal units *stratified by attribute* (i.e., permutations in S_{A,U}) is finite-sample valid.

[•] Note the "interaction" between (a) design, (b) exposure definition, and (c) focal unit selection.

Let $\mathcal{O} = \{\pi \mathbf{W}^{\text{obs}} : \pi \in S_{A,U}\}$ = orbit generated by observed exposure. Goal is to show that $\mathbf{W} \mid \mathbf{U}$ is uniform in \mathcal{O} (implies permutation test!)

Let $\mathcal{O} = \{\pi \mathbf{W}^{\text{obs}} : \pi \in S_{A,U}\}$ = orbit generated by observed exposure. Goal is to show that $\mathbf{W} \mid \mathbf{U}$ is uniform in \mathcal{O} (implies permutation test!)

 $P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \pi \mathbf{L}) = \dots$

- $= 1\{w(\pi \mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\pi \mathbf{L})\}$
- $= 1\{\pi w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = \pi u(\mathbf{L})\}$
- $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\pi^{-1}\mathbf{U} = u(\mathbf{L})\}$
- $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\mathbf{L})\}$
- $= P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \mathbf{L}).$

- ${\bf L}$ fully determines ${\bf W}, {\bf U}$
- equivariance conditions (b),(c)
 - orbit property

$$\pi^{-1}\mathbf{U} = \mathbf{U}$$
 since $\pi \in \mathsf{S}_{A,U}$

Let $\mathcal{O} = \{\pi \mathbf{W}^{obs} : \pi \in S_{A,U}\}$ = orbit generated by observed exposure. Goal is to show that $\mathbf{W} \mid \mathbf{U}$ is uniform in \mathcal{O} (implies permutation test!)

 $P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \pi \mathbf{L}) = \dots$

 $= 1\{w(\pi L) \in \mathcal{O}\} \ 1\{U = u(\pi L)\}$

 $=1\{\pi w(\mathbf{L})\in \mathcal{O}\}\ 1\{\mathbf{U}=\pi u(\mathbf{L})\}\$

 $=1\{w(\mathbf{L})\in\mathcal{O}\}\ 1\{\pi^{-1}\mathbf{U}=u(\mathbf{L})\}$

 $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\mathbf{L})\} \qquad \pi^{-1}\mathbf{U} = \mathbf{U} \text{ since } \pi \in S_{A,U}$

 $= P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \mathbf{L}).$

L fully determines W, U

equivariance conditions (b),(c)

Let $\mathcal{O} = \{\pi \mathbf{W}^{obs} : \pi \in S_{A,U}\}$ = orbit generated by observed exposure. Goal is to show that $\mathbf{W} \mid \mathbf{U}$ is uniform in \mathcal{O} (implies permutation test!)

 $P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \pi \mathbf{L}) = \dots$

- $= 1\{w(\pi L) \in \mathcal{O}\} \ 1\{U = u(\pi L)\}$
- $=1\{\pi w(\mathbf{L}) \in \mathcal{O}\}\ 1\{\mathbf{U}=\pi u(\mathbf{L})\}\$

 $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\pi^{-1}\mathbf{U} = u(\mathbf{L})\}$

L fully determines W, U

equivariance conditions (b),(c)

orbit property

 $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\mathbf{L})\} \qquad \pi^{-1}\mathbf{U} = \mathbf{U} \text{ since } \pi \in S_{A,U}$

 $= P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \mathbf{L}).$

Let $\mathcal{O} = \{\pi \mathbf{W}^{obs} : \pi \in S_{A,U}\}$ = orbit generated by observed exposure. Goal is to show that $\mathbf{W} \mid \mathbf{U}$ is uniform in \mathcal{O} (implies permutation test!)

 $P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \pi \mathbf{L}) = \dots$

 $= 1\{w(\pi L) \in \mathcal{O}\} \ 1\{U = u(\pi L)\}\$

 $=1\{\pi w(\mathbf{L}) \in \mathcal{O}\}\ 1\{\mathbf{U}=\pi u(\mathbf{L})\}\$

 $=1\{w(\mathbf{L})\in\mathcal{O}\}\ 1\{\pi^{-1}\mathbf{U}=u(\mathbf{L})\}$

L fully determines W, U

equivariance conditions (b),(c)

 $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\mathbf{L})\} \qquad \pi^{-1}\mathbf{U} = \mathbf{U} \text{ since } \pi \in \mathsf{S}_{A,U}$

 $= P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \mathbf{L}).$

Let $\mathcal{O} = \{\pi \mathbf{W}^{\text{obs}} : \pi \in S_{A,U}\}$ = orbit generated by observed exposure. Goal is to show that $\mathbf{W} \mid \mathbf{U}$ is uniform in \mathcal{O} (implies permutation test!)

 $P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \pi \mathbf{L}) = \dots$

- $= 1\{w(\pi \mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\pi \mathbf{L})\}$
- $= 1\{\pi w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = \pi u(\mathbf{L})\}$
- $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\pi^{-1}\mathbf{U} = u(\mathbf{L})\}\$
- $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\mathbf{L})\}$

- L fully determines \mathbf{W}, \mathbf{U}
- equivariance conditions (b),(c)
 - orbit property

$$\pi^{-1}\mathbf{U} = \mathbf{U}$$
 since $\pi \in S_{A,U}$

 $= P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \mathbf{L}).$

Let $\mathcal{O} = \{\pi \mathbf{W}^{\text{obs}} : \pi \in S_{A,U}\}$ = orbit generated by observed exposure. Goal is to show that $\mathbf{W} \mid \mathbf{U}$ is uniform in \mathcal{O} (implies permutation test!)

 $P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \pi \mathbf{L}) = \dots$

- $= 1\{w(\pi \mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\pi \mathbf{L})\}$
- $= 1\{\pi w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = \pi u(\mathbf{L})\}$
- $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\pi^{-1}\mathbf{U} = u(\mathbf{L})\}\$
- $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\mathbf{L})\}$
- $= P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \mathbf{L}).$

L fully determines W, U equivariance conditions (b),(c)

orbit property

$$\pi^{-1}\mathbf{U} = \mathbf{U}$$
 since $\pi \in \mathsf{S}_{A,U}$

Let $\mathcal{O} = \{\pi \mathbf{W}^{obs} : \pi \in S_{A,U}\}$ = orbit generated by observed exposure. Goal is to show that $\mathbf{W} \mid \mathbf{U}$ is uniform in \mathcal{O} (implies permutation test!)

 $P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \pi \mathbf{L}) = \dots$

 $= 1\{w(\pi L) \in \mathcal{O}\} \ 1\{U = u(\pi L)\}\$

 $= 1{\pi w(\mathbf{L}) \in \mathcal{O}} 1{\mathbf{U} = \pi u(\mathbf{L})}$ equivariance conditions (b),(c)

 $=1\{w(\mathbf{L})\in\mathcal{O}\}\ 1\{\pi^{-1}\mathbf{U}=u(\mathbf{L})\}$

L fully determines W, U

 $= 1\{w(\mathbf{L}) \in \mathcal{O}\} \ 1\{\mathbf{U} = u(\mathbf{L})\} \qquad \pi^{-1}\mathbf{U} = \mathbf{U} \text{ since } \pi \in S_{A,U}$ $= P(\mathbf{W} \in \mathcal{O}, \mathbf{U} \mid \mathbf{L}).$

• From Bayes and condition (a), we obtain

 $P(\pi \mathbf{L} \mid \mathbf{W} \in \mathcal{O}, \mathbf{U}) = P(\mathbf{L} \mid \mathbf{W} \in \mathcal{O}, \mathbf{U}).$

That is, the design "maintains" its invariance even conditional on focal selection within the subspace $S_{A,U}$.

• Equivariance of $w(\mathbf{L})$ then implies the theorem.

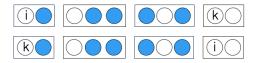
Application of theory — Condition (b)

Recall that as exposure we use

 $w_i(\mathbf{L}) = f(\{A_j : L_j = L_i, j \neq i\}) \quad \text{(for some known } f\text{)}.$

Then, $w(\mathbf{L})$ satisfies equivariance (b).

To see this, if we swap the rooms of i, k (with $A_i = A_k$), then the exposures of i, k are transposed but all other exposures are unchanged.



Application of theory — Condition (c)

Suppose we simply define the focal units as:

 $\mathbf{U} = u(\mathbf{L}) = 1\{w(\mathbf{L}) \in \mathbb{W}_0\};\$

i.e., "Focus on units that are exposed to the null exposure levels." Then, u(L) satisfies equivariance (c). To see this: Application of theory — Condition (c)

Suppose we simply define the focal units as:

 $\mathbf{U} = u(\mathbf{L}) = 1\{w(\mathbf{L}) \in \mathbb{W}_0\};\$

i.e., "Focus on units that are exposed to the null exposure levels." Then, u(L) satisfies equivariance (c). To see this:

 $u(\pi \mathsf{L}) = 1\{w(\pi \mathsf{L}) \in \mathbb{W}_0\} = 1\{\pi w(\mathsf{L}) \in \mathbb{W}_0\} = \pi 1\{w(\mathsf{L}) \in \mathbb{W}_0\} = \pi u(\mathsf{L}).$

Condition (a): Design symmetry

The last condition is $P(\pi \mathbf{L}) = P(\mathbf{L})$. This is very mild under reasonable randomized designs; e.g.,

- Completely randomized design with a fixed number of units assigned to each room.
- Stratified randomized design with a fixed number of units assigned to each pair (room, attribute).
- ... etc

Re-analysis of (Li et al, 2019)

- Hypothesis of no difference between "0 or 3 Gaokao roommates" denoted as " $H_0^{0,3}$ ".
- Also test within subgroups: (0)=non-Gaokao; (1)=Gaokao students.

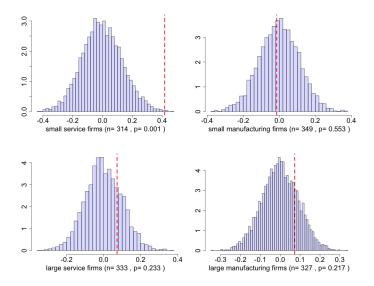
	<i>p</i> -value	estimate	confidence interval
$H_0^{0,3}$	0.04	-0.31	(-0.67, -0.02)
$H_0^{0,3}(0)$	0.02	-0.37	(-0.73, -0.05)
$H_0^{0,3}(1)$	0.23	-0.28	(-0.81, 0.12)

- Main difference with the design-based analysis of Li et al (2019) is for the subgroup of Gaokao students (they find strong significance).
- Could be explained by the asymptotic approximations in (Li et al, 2019), which may be unwarranted given the small sample size (see paper for simulation study).

Re-analysis of (Cai and Szeidl, 2017)

• The design randomized CEOs into working groups that met monthly for a year, and then tracked various firm performance metrics.

- The authors studied heterogeneity in "direct effects". They showed that larger firms benefited more from the meetings.
- Our method can analyze *heterogeneity in peer effects* by testing the global null within subgroups.
- Regression specifications cannot easily capture peer effect heterogeneity due to model saturation.



• Peer effects only on small service firms.

Concluding remarks

- Recently, conditional randomization tests have been devised to test complex causal effects under interference.
- However, conditional FRTs are computationally demanding.
- Permutation tests are computationally simple, but conditional FRTs are not always permutation tests.
- We proved *sufficient* theoretical conditions to make the connection. But, are these conditions necessary?
- What about other designs? (e.g., two-stage, cluster)

Thank you!

- (*) Basse, Ding, Feller, T., "Randomization tests for group formation experiments" (2023+, cond. accept, Econometrica)
- Puelz, Basse, Feller, T., "A graph-theoretic approach to randomization tests of causal effects under interference" (JRSSB, 2021)
- Basse, Feller, T., "Randomization tests of causal effects under interference" (Biometrika, 2019)