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Abstract Estimation with large amounts of data can be
facilitated by stochastic gradient methods, in which model
parameters are updated sequentially using small batches of
data at each step. Here, we review early work and modern
results that illustrate the statistical properties of these meth-
ods, including convergence rates, stability, and asymptotic
bias and variance. We then overview modern applications
where these methods are useful, ranging from an online ver-
sion of the EM algorithm to deep learning. In light of these
results, we argue that stochastic gradient methods are poised
to become benchmark principled estimation procedures for
large datasets, especially those in the family of stable proxi-
mal methods, such as implicit stochastic gradient descent.

Keywords Maximum likelihood · Recursive estimation ·
Implicit stochastic gradient descent methods · Optimal
learning rate · Asymptotic analysis · Big data

1 Introduction

Parameter estimation by optimization of an objective func-
tion, such asmaximumlikelihoodandmaximuma-posteriori,
is a fundamental idea in statistics and machine learning
(Fisher 1922; Lehmann and Casella 2003; Hastie et al.
2011). However, widely used optimization-based estimation
algorithms, such as Fisher scoring, the EM algorithm, and
iteratively reweighted least squares (Fisher 1925a; Dempster
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et al. 1977; Green 1984), are not scalable to modern datasets
with hundreds of millions of data points and hundreds of
thousands of covariates (National Research Council 2013).

To illustrate, let us consider the problem of estimating
the true vector of parameters θ� ∈ R

p from an i.i.d. sam-
ple Y = { yn}, for n = 1, 2, . . . , N , where a data point
yn ∈ R

d is distributed according to a density f ( yn; θ�) with
log-likelihood function �(θ;Y) = ∑N

n=1 log f ( yn; θ). Tra-
ditional estimation methods are typically iterative and have
a running-time complexity that ranges betweenO(Np3) and
O(Np), in worst cases and best cases, respectively. Newton–
Raphson methods, for instance, update an estimate θnrn−1 of
the parameters through the recursion

θnrn = θnrn−1 − H−1
n−1∇�(θnrn−1;Y), (1)

where Hn = ∇∇�(θnrn ;Y) is the p × p Hessian matrix of
the log-likelihood. The matrix inversion and the likelihood
computation yield an algorithm with roughly O(Np2+ε)

complexity which makes it unsuitable for large datasets.
Fisher scoring replaces the Hessian matrix with its expected
value i.e., it uses the Fisher information matrix I(θ) =
−E

(∇∇�(θ; yn)
)
, where the expectation is over the random

sample yn . The advantage of this method is that a steady
increase in the likelihood is possible, as in the EM algorithm,
since I(θ) is positive-definite, and thus the difference

�(θ+ε�θ;Y)−�(θ;Y)≈ε�(θ;Y)ᵀI(θ)−1�(θ;Y)+O(ε2)

can be made positive for an appropriately small value
ε > 0. However, Fisher scoring performs very similarly
to Newton–Raphson in practice, and the two algorithms are
actually identical in the exponential family (Lange 2010).
Furthermore, Fisher scoring is computationally comparable
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to Newton–Raphson and thus unsuited for problems with
large datasets.

Quasi-Newton (QN) methods are a powerful alternative
and are widely used in practice. In QN methods, the Hessian
is approximated by a low-rank matrix that is updated at
each iteration as new values of the gradient become avail-
able, thus yielding algorithms with complexity O(Np2) or
O(Np) in certain favorable cases (Hennig and Kiefel 2013).
Other general estimation algorithms such asEMor iteratively
reweighted least squares (Green 1984) involve computations
(e.g., inversions or maximizations between iterations) that
are significantly more expensive than QN methods.

However, estimation with massive datasets requires a
running-time complexity that is roughlyO(Np1−ε) i.e., that
is linear in N but sublinear in the parameter dimension p.
The first requirement on N seems hard to overcome since
an iteration over all data points needs to be performed, at
least when data are i.i.d.; thus, sublinearity in p is crucial
(Bousquet and Bottou 2008). Such computational require-
ments have recently sparked interest in algorithms that utilize
only first-order information i.e., methods that utilize only
gradient computations.1 Such performance is achieved by the
stochastic gradient descent (SGD) algorithm, which was ini-
tially proposed by Sakrison (1965) as a recursive estimation
method, albeit not in first-order form. A typical first-order
SGD is defined by the iteration

θ
sgd
n = θ

sgd
n−1 + an∇�(θ

sgd
n−1; yn). (2)

We will refer to Eq. (2) as SGD with explicit updates, or
explicit SGD for short, because the next iterate θ

sgd
n can

be computed immediately after the new data point yn is
observed.2 The sequence an > 0 is a carefully chosen
learning rate sequence which is typically defined such that
nan → α > 0 as n → ∞. The parameter α > 0 is the
learning rate parameter, and it is crucial for the convergence
and stability of explicit SGD.

From a computational perspective, the SGD procedure
(2) is appealing because the expensive inversion of p × p
matrices, as in Newton–Raphson, is replaced by a single
sequence an > 0. Furthermore, the log-likelihood is eval-
uated at a single observation yn , and not on the entire dataset
Y . Necessarily this incurs information loss which is impor-
tant to quantify. From a theoretical perspective the explicit

1 Second-order methods typically use the Hessian matrix of second-
order derivatives of the log-likelihood and are discussed in detail in
Sect. 3.
2 Procedure (2) is actually an ascent algorithm because it aims to max-
imize the log-likelihood, and thus a more appropriate name would be
stochastic gradient ascent. However, we will use the term “descent” in
order to keep in line with the relevant optimization literature, which
traditionally considers minimization problems through descent algo-
rithms.

SGD updates are justified because, under typical regularity
conditions, E

(∇�(θ�; yn)
) = 0 and thus θn → θ� by the

properties of the Robbins–Monro procedure (Robbins and
Monro 1951). However, the explicit SGD procedure requires
careful tuning of the learning rate parameter; small values of
α will make the iteration (2) very slow to converge, whereas
for large values of α explicit SGD will either have a large
asymptotic variance, or even diverge numerically. As a recur-
sive estimation method, explicit SGD was first proposed by
Sakrison (1965) and has attracted attention in the machine
learning community as a fast prediction method for large-
scale problems (Le et al. 2004; Zhang 2004).

In order to stabilize explicit SGDwithout sacrificing com-
putational efficiency, Toulis et al. (2014) defined the implicit
SGD procedure through the iteration

θ imn = θ imn−1 + an∇�(θ imn ; yn). (3)

Note that Eq. (3) is implicit because the next iterate θ imn
appears in both sides of the equation.3 This simple tweak of
the explicit SGD procedure has quite remarkable statistical
properties. In particular, assuming a common starting point
θ
sgd
n−1 = θ imn−1 � θ , one can show through a simple Tay-

lor approximation of (3) around θ , that the implicit update
satisfies

�θ imn = (I + anÎ(θ; yn))−1�θ
sgd
n + O(a2n), (4)

where �θn = θn − θn−1 for both methods, and Î(θ; yn) =
−∇∇�(θ; yn) is the observed Fisher information matrix.
Thus, the implicit SGD procedure calculates updates that
are a shrinked version of the explicit ones. In contrast to
explicit SGD, implicit SGD is significantly more stable in
small-samples, and it is also robust to misspecifications of
the learning rate parameter α. Furthermore, implicit SGD
computes iterates that belong in the support of the para-
meter space, whereas explicit SGD would normally require
an additional projection step. Arguably, the normalized least
mean squares (NLMS) filter (Nagumo and Noda 1967) was
the first statistical model that used an implicit update as
in Eq. (3) and was shown to be consistent and robust to
input noise (Slock1993).Theoretical justification for implicit
SGD comes either from implicit variations of the Robbins–
Monro procedure (Toulis et al. 2014), or through proximal
methods in optimization (Parikh and Boyd 2013), such as
mirror-descent (Nemirovski 1983; Beck and Teboulle 2003).
Assuming differentiability of the log-likelihood, the implicit

3 The solution of the fixed-point equation (3) requires additional
computations per iterations. However, Toulis et al. (2014) derive a com-
putationally efficient implicit algorithm in the context of generalized
linear models. Furthermore, approximate solutions of implicit updates
are possible for any statistical model (see Eq. (4)).
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SGD update (3) can be expressed as a proximal method
through the solution of

θ imn = argmax
θ

{

−1

2
||θ − θ imn−1||2 + an�(θ; yn)

}

, (5)

where the right-hand side is the proximal operator. The
update in Eq. (5) is the stochastic version of the determin-
istic proximal point algorithm by Rockafellar (1976), and
has been analyzed recently, in various forms, for conver-
gence and stability (Ryu and Boyd 2014; Rosasco et al.
2014). Recentwork has established the consistency of certain
implicit methods similar to (3) (Kivinen and Warmuth 1995;
Kivinen et al. 2006; Kulis and Bartlett 2010) and their robust-
ness has been useful in a range of modern machine learning
problems (Nemirovski et al. 2009; Kulis and Bartlett 2010;
Schuurmans and Caelli 2007).

The structure of this chapter is as follows. In Sect. 2
we give an overview of the Robbins–Monro procedure and
Sakrison’s recursive estimation method, which form the the-
oretical basis of SGD methods; we further provide a quick
overview of early results on the statistical efficiency of the
aforementioned methods. In Sect. 3, we formally introduce
explicit and implicit SGD, and treat those procedures as sta-
tistical estimation methods that provide an estimator θn of
the model parameters θ� after n iterations. In Sect. 3.1 we
give results on the frequentist statistical properties of SGD
estimators i.e., their asymptotic bias and asymptotic variance
across multiple realizations of the dataset Y . We then lever-
age those results to study optimal learning rate sequences an
(Sect. 3.4), the loss of statistical efficiency in SGD and ways
to fix it through reparameterization (Sect. 3.3).Webriefly dis-
cuss stability in Sect. 3.2. In Sect. 3.5, we present significant
extensions to first-order SGD, namely averaged SGD, vari-
ants of second-order SGD, and Monte-Carlo SGD. Finally,
in Sect. 4, we review significant applications of SGD in vari-
ous areas of statistics andmachine learning, namely in online
EM,MCMCposterior sampling, reinforcement learning, and
deep learning.

2 Stochastic approximations

2.1 Robbins and Monro’s procedure

Consider the one-dimensional setting where one data point is
denoted by yn ∈ R and it is controlled by a parameter θ with
regression function M(θ) = E (y| θ) that is nondecreasing,
and whose analytic form might be unknown. Robbins and
Monro (1951) considered the problem of finding the unique
point θ� for which M(θ�) = 0. They devised a procedure,
known as the Robbins–Monro procedure, in which an esti-
mate θn−1 of θ� is utilized to sample one new data point

yn such that E (yn| θn−1) = M(θn−1); the estimate is then
updated according to the following simple rule:

θn = θn−1 − an yn . (6)

The scalar an > 0 is the learning rate and should decay
to zero, but not too fast in order to guarantee convergence.
Robbins and Monro (1951) proved that E

(
(θn − θ�)

2
) → 0

when

(a) (x − θ�)M(x) > 0 for x in a neighborhood of θ�,
(b) E

(
y2n

∣
∣ θ) < ∞ for any θ , and

(c)
∑∞

i=1 ai = ∞ and
∑∞

i=1 a
2
i < ∞.

The original proof is technical but themain idea is straight-
forward. Let bn � E

(
(θn − θ�)

2
)
denote the squared error,

then through iteration (6) one can obtain

bn = bn−1 − 2anE ((θn−1 − θ�)M(θn−1)) + a2nE
(
y2n

)
.

(7)

In theneighborhoodof θ� wehaveM(θn−1) ≈ M ′(θ�)(θn−1−
θ�), and thus

bn = (1 − 2anM
′(θ�))bn−1 + a2nE

(
y2n

)
. (8)

For a learning rate sequence of the form an = α/n, typ-
ical proof techniques in stochastic approximation (Chung
1954) can establish that bn → 0. Furthermore, it holds
nbn → α2σ 2(2αM ′(θ�) − 1)−1 where σ 2 � E

(
y2n

∣
∣ θ�)

when this limit exists; this result was not given in the original
paper by Robbins and Monro (1951) but it was soon derived
by several other authors (Chung 1954; Sacks 1958; Fabian
1968). Thus, the learning parameter α is critical for the per-
formance of theRobbins–Monro procedure. Its optimal value
is α� = 1/M ′(θ�), which requires knowledge of the slope of
M(·) at the true parameter values. In the multidimensional
case, the efficiency of stochastic approximations—including
stochastic gradient descent—depends on the Jacobian of the
mean-value function of the statistic used in the iterations
(see Sect. 3.1). This early result spawned an important line
of research on adaptive stochastic approximation methods,
such as the Venter process (Venter 1967), in which quanti-
ties that are important for the convergence of the stochastic
process (e.g., the quantity M ′(θ�)) are also being estimated
along the way.

2.2 Sakrison’s recursive estimation method

Although initially applied in sequential experiment design,
the Robbins–Monro procedure was soon adapted for esti-
mation. Sakrison (1965) was interested in estimating the
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parameters θ� of a model that generated i.i.d. observations
yn in a way that is computationally and statistically efficient,
similar to our setup in the introduction. He recognized that
the statistical identity E

(∇�(θ�; yn)
) = 0, where the expec-

tation is over the observed data yn , provides the theoretical
basis for a general estimation method using the Robbins–
Monro procedure. Sakrison’s recursive estimation method
was essentially one of the first explicit SGD method pro-
posed in the literature:

θ sakn ≈ θ sakn−1 + (1/n)I(θ sakn−1)
−1∇�(θ sakn−1; yn), (9)

The SGD procedure (9) is second-order since it is using
a matrix to condition the gradient of the log-likelihood.
Under typical regularity conditions θ sakn → θ�, and thus
I(θ sakn ) → I(θ�). Sakrison (1965) also proved that
nE

(||θ sakn − θ�||2
) → trace(I(θ�)

−1), and so the esti-
mation of θ� is asymptotically efficient under this norm
objective. It is interesting to note that updates of the form
(9) appeared very early in the statistical literature. For
example, Fisher (1925b) suggested that an inefficient esti-
mator θN using N data points can be made asymptotically
efficient by considering a new estimator θ+

N = θN +
(1/N )I(θ�)

−1 ∑N
i=1 ∇�(θ N ; yi ). The surprising result in

Sakrison’s work was that asymptotically optimal estimation
is also possible by using only gradients of the log-likelihood
on single data points yi in the iterated algorithm (9).

3 Estimation with stochastic gradient methods

For the rest of this chapter we will consider a simple gen-
eralization of explicit and implicit SGD that is similar to
Sakrison’s method as follows:

θ
sgd
n = θ

sgd
n−1 + Cn∇�(θ

sgd
n−1; yn), (10)

θ imn = θ imn−1 + Cn∇�(θ imn ; yn). (11)

In general all Cn are symmetric and positive-definite
matrices, and serve to stabilize and optimize stochastic iter-
ations as in (10) and (11). In the limit nCn → C where C
is a symmetric and positive-definite matrix. If Cn is not triv-
ial (e.g., scaled identity), we will refer to (10) and (11) as
second-order explicit SGD and second-order implicit SGD,
respectively. When Cn = an I i.e., it is the scaled identity
matrix for some sequence an > 0 satisfying the Robbins–
Monro conditions, wewill refer to (10) and (11) as first-order
explicit SGD and first-order implicit SGD, respectively; in
this case, definitions (10) and (11) are identical to defini-
tions (2) and (3) in the introduction. In some cases, we will
consider models in the exponential family under the natural

parameterization with density

f ( yn; θ�) = exp{θ�
ᵀs( yn) − A(θ�) + B( yn)}, (12)

where s( yn) is the vector of p sufficient statistics, and
A(·), B(·) are appropriate real-valued functions. The SGD
procedures simplify to

θ
sgd
n = θ

sgd
n−1 + Cn(s( yn) − ∇A(θ

sgd
n−1)), (13)

θ imn = θ imn−1 + Cn(s( yn) − ∇A(θ imn )). (14)

In what follows, we will consider a frequentist evaluation
of SGD as a statistical estimation method i.e., we will con-
sider θ sgdn (or θ imn ) to be an estimator of θ�, and we will focus
on its bias and variance across multiple realizations of the
dataset Y = { y1, y2, . . . , yn}, under the same model and
parameter θ�.4

3.1 Asymptotic bias and variance

Typically, online procedures such as SGD have two phases,
namely the exploration phase (or search phase) and the con-
vergence phase (Amari 1998; Benveniste et al. 2012). In the
exploration phase the iterates rapidly approach θ�, whereas
in the convergence phase they jitter around θ� within a ball of
slowly decreasing radius.Wewill overview a typical analysis
of SGD in the final convergence phase in which we assume
that a Taylor approximation in the neighborhood of θ� is
accurate (Murata 1998; Toulis et al. 2014). In particular let
μ(θ) = E

(∇�(θ; yn)
)
, and assume that

μ(θn) = μ(θ�) + Jμ(θ�)(θn − θ�) + o(an), (15)

where Jμ is the Jacobian of the function μ(·), and o(an)
denotes a vector sequence vn for which ||vn||/an → 0.
Under typical regularity conditionsμ(θ�) = 0 and Jμ(θ�) =
−I(θ�). Thus, if we denote the biases of the two SGDmeth-
ods asE(θ

sgd
n −θ�) � bsgdn andE(θ imn −θ�) � bimn , by taking

expectations in Eqs. (10) and (11) we obtain

bsgdn = (I − CnI(θ�)) bsgdn−1 + o(an), (16)

bimn = (I + CnI(θ�))
−1 bimn−1 + o(an). (17)

We observe that the convergence rate at which the two
methods become unbiased in the limit differs in two sig-
nificant ways. First, the explicit SGD method converges

4 This is an important distinction because, traditionally, the focus in
optimization has been to obtain fast convergence to some point θ̂ that
minimizes the empirical loss, e.g., the maximum-likelihood estimator.
Froma statistical viewpoint, under variability of the data, there is a trade-
off between convergence to an estimator and its asymptotic variance (Le
et al. 2004).
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faster than the implicit one because ||(I − CnI(θ�))|| <

||(I+CnI(θ�))
−1||, for sufficiently large n; the rates become

equal in the limit as an → 0. However, the implicit method
compensates by being more stable in the specification of
the condition matrices Cn . For example, the explicit SGD
requires that the sequence I − CnI(θ�) is comprised of
matrices with eigenvalues less than one, in order to guarantee
stability; this is a significant source of trouble when applying
explicit SGD in practice. In contrast, for any specification of
positive-definite Cn , the eigenvalues of (I + CnI(θ�))

−1

are less than one, and thus implicit SGD is unconditionally
stable; we will discuss more about stability in Sect. 3.4.

In regard to statistical efficiency, Taylor approximation
can also be used to establish recursive equations for the
asymptotic variance of θ

sgd
n and θ imn . For example, Toulis

et al. (2014) show that if C is a symmetric matrix that com-
muteswithI(θ�) such that (2CI(θ�)− I) is positive-definite
and nCn → C, it holds

nVar(θ sgdn ) → (2CI(θ�) − I)−1CI(θ�)Cᵀ,

nVar(θ imn ) → (2CI(θ�) − I)−1CI(θ�)Cᵀ; (18)

i.e., both SGD methods have the same asymptotic variance.
Thus, for first-order SGD procedures where Cn = an I with
nan → α > 0 we obtain

nVar(θ sgdn ) → α2(2αI(θ�) − I)−1I(θ�),

nVar(θ imn ) → α2(2αI(θ�) − I)−1I(θ�). (19)

Thematrix term (2CI(θ�)− I)−1 represents the informa-
tion that is lost by SGD, and it needs to be identity for optimal
statistical efficiency (see Sect. 3.4). In fact, in more general-
ity, this term is equal to (2C Jμ(θ�) − I)−1 where μ(θ) is
mean-value function of the statistic used in SGD (see also
Equation (15)), and Jμ(θ�) is its Jacobian at the true para-
meter values. Therefore, the asymptotic efficiency of SGD
methods depends crucially on the Jacobian of themean-value
function of the statistic used in the SGD iterations.

Asymptotic variance results similar to (18) were first
studied in the stochastic approximation literature by Chung
(1954), Sacks (1958), and followed by Fabian (1968) and
several other authors (see also Ljung et al. 1992, Parts I,
II), but not in a closed-form (18), as most analyses were not
done under the context of recursive statistical estimation. Fur-
thermore, Sakrison’s asymptotic efficiency result (Sakrison
1965) can be recovered by setting Cn = (1/n)I(θn−1)

−1;
in this case the asymptotic variance for both estimators is
(1/n)I(θ�)

−1 i.e., it is the optimal asymptotic efficiency of
the maximum-likelihood estimator.

3.2 Stability issues

Stability has been a well-known issue for explicit SGD. The
main problem in practice is that the learning rate sequence
needs to agree with the eigenvalues of the Fisher information
matrix. To see this, let us simplify (16) and (17) by dropping
the remainder terms o(an). Then we obtain

bsgdn = (I − CnI(θ�))b
sgd
n−1 = Pn

1b0, (20)

bimn = (I + CnI(θ�))
−1bimn−1 = Qn

1b0, (21)

where Pn
1 = ∏n

i=1(I − C iI(θ�)), Qn
1 = ∏n

i=1(I +
C iI(θ�))

−1, and b0 denotes the initial bias of the two pro-
cedures from some common starting point θ0. Thus, the
matrices Pn

1 and Qn
1 describe how fast the initial bias decays

for the explicit and implicit SGD, respectively. Assuming
convergence, Pn

1 → 0 and Qn
1 → 0, and thus we say

that both methods are asymptotically stable. However, they
have significant differences in small-to-moderate samples.
For simplicity, let us compare the two SGD procedures in
their first-order formulation where Cn = an I and an = α/n
for some α > 0.

In explicit SGD, the eigenvalues of Pn
1 can be calculated as

λ′
i = ∏

j (1 − αλi/j) = O(n−αλi ), for 0 < αλi < 1, where
λi are the eigenvalues of the Fisher informationmatrixI(θ�).
Thus, the magnitude of Pn

1 will be dominated by λmax, the
maximumeigenvalue ofI(θ�), and the rate of convergence to
zero will be dominated by λmin, the minimum eigenvalue of
I(θ�). The condition αλmax ≤ 1 ⇒ α ≤ 1/λmax is required
for stability, but for fast convergence we require αλmin ≈ 1.
In high-dimensional settings, this could be the source of seri-
ous problems because λmax could be at the order of p i.e.,
the number of model parameters. Thus, in explicit SGD the
requirements for stability and speed of convergence are in
conflict. A conservative learning rate sequence can guarantee
stability but this comes at a price in convergencewhichwill be
at the order of O(n−αλmin), and vice versa. In stark contrast,
the implicit procedure is unconditionally stable. The eigen-
values of Qn

1 are λ′
i = ∏n

j=1 1/(1 + αλi/j) = O(n−αλi ),
and thus are guaranteed to be less than one for any choice
of the learning rate parameter α. The critical difference with
explicit SGD is that it is no longer required to have a small
α for stability because the eigenvalues of Qn

1 will always be
less than one.

Based on this analysis the magnitude of Pn
1 can become

arbitrarily large, and thus explicit SGD is likely to numeri-
cally diverge. In contrast, Qn

1 is guaranteed to be bounded,
and so under any misspecification of the learning rate para-
meter the implicit SGD procedure is guaranteed to remain
stable. The instability of explicit SGD is well known, and
requires careful work to be avoided in practice. For exam-
ple, a typical learning rate for explicit SGD is of the form
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an = α(αβ + n)−1, where β is chosen so that the explicit
updates will not diverge; a reasonable choice is to set β =
trace(I(θ�)) and α to be set close to 1/λmin . Such explicit
normalization of the learning rates is not necessary in implicit
SGD because, as shown in Equation (4), the implicit update
performs such normalization indirectly.

Finally, an important line of work in the stability of sto-
chastic approximations has been inspired by Huber’s work in
robust statistics (Huber et al. 1964; Huber 2011). In our nota-
tion, robust stochastic approximation considers iterations of
the following form

θn = θn−1 + Cnψ(s( yn) − h(θn−1)), (22)

where an appropriate function ψ is sought for robust estima-
tion; in this problem we assume E

(
s( yn)

) = h(θ�) but the
distribution of s( yn)−h(θ�) – denoted by f (·) – is unknown.
In a typical setup, f (·) is considered to belong to a family of
distributions P , and ψ is selected as

ψ� = argψ minmax
f ∈P

lim
n→∞ nVar(θn)

i.e., such that themaximum possible variance over the family
P isminimized. Several important results have been achieved
by Martin and Masreliez (1975) and Polyak and Tsypkin
(1979). For example, in linear models where μ(·) is linear in
θ and s( yn) is one-dimensional, consider the general family
P = { f : f (0) ≥ ε} as the set of all symmetric densities that
are positive at 0. Then the optimal choice isψ� = sign(·) i.e.,
the sign function, because it can be shown that the Laplace
distribution is the member density of P that gives the least
information about the parameters θ�.

3.3 Choice of parameterization and efficiency

First-order SGD methods are attractive for their computa-
tional performance, but the variance result (19) shows that
they may suffer a significant loss in statistical efficiency.
However, a reparameterization of the problem could yield
a first-order SGD method that is optimal. The method can
be described as follows. First, assume the exponential family
(12) such that ∇�(θ; yn) = s( yn) − h(θ), where h(θ) =
∇A(θ) = E

(
s( yn)

∣
∣ θ� = θ), and consider the reparameteri-

zation

ω � h(θ), (23)

whichwe assume it exists, it is 1-1 and easy to compute; these
are critical assumptions that are hard, but not impossible to
hold in practice.Wewill refer to (23) as themean-value para-
meterization and ω as the mean-value parameters. Starting
with an estimate ω0 of ω� = h(θ�), we can define the SGD
procedures on this new parameter space as

ω
sgd
n = ω

sgd
n−1 + (1/n)(s( yn) − ω

sgd
n−1), (24)

ωim
n = ωim

n−1 + (1/n)(s( yn) − ωim
n ), (25)

where we also set Cn = (1/n)I so that C = I . In this case,
the explicit SGD simply calculates the running average of
the complete sufficient statistic i.e., ωsgd

n = n−1 ∑n
i=1 s( yi ),

and thus it is identical to the MLE estimator; similarly the
implicit SGD satisfiesωim

n = (n+1)−1 ∑n
i=1 s( yi ) i.e., it is a

slightly biased version of the MLE. It is thus straightforward
to show (see for example Toulis and Airoldi 2014) that the
mean-value parameterization is optimal i.e.,

Var
(
h−1(ω

sgd
n )

)
→ (1/n)I(θ�)

−1,Var
(
h−1(ωim

n )
)

→ (1/n)I(θ�)
−1. (26)

Intuitively, the mean-value parameterization transforms all
parameters into location parameters. The Jacobian of the
regression function of the statistic is Jμ(ω�) = ∇ω

E
(
s( yn)

∣
∣ω = ω�) = I , and thus the information loss

described in Equation (18) is avoided since (2C Jμ(ω�) −
I)−1 = I . Transforming back to the original parameter space
incurs no information loss as well, and so estimation of θ� is
efficient. This method is illustrated in the following example.

Example. Consider the problem of estimating (μ, σ 2)

from normal observations yn ∼ N (μ, σ 2), and let θ� =
(μ, σ 2) which is not the natural parameterization. Consider
sufficient statistics s( yn) = (yn, y2n ) such that E

(
s( yn)

) =
(μ,μ2 + σ 2) � (ω1, ω2). The parameter ω = (ω1, ω2) cor-
responds to the mean-value parameterization. The inverse
transformation is μ = ω1 and σ 2 = ω2 − ω2

1, and thus its
Jacobian is

J−1
h =

(
1 0

−2ω1 1

)

.

The variance of s( yn) is given by

V (θ�) =
(

Q 2ω1Q
2ω1Q 4ω2

1Q + 2Q2

)

,

where Q = ω2 − ω2
1 = σ 2. Thus the variance of (ω̂1, ω̂2) is

(1/n)V (θ�) and the variance of (μ̂, σ̂ 2) is given by

Var
(
(μ̂, σ̂ 2)

)
= (1/n)J−1

h V J−1T
h = (1/n)

(
Q 0
0 2Q2

)

= (1/n)

(
σ 2 0
0 2σ 4

)

,

which is exactly the asymptotic variance of the MLE esti-
mate. In practice, however, the mean-value transformation is
rarely possible. Still, the intuition of transforming the model
parameters into location parameters can be very useful in

123



Stat Comput (2015) 25:781–795 787

many situations, even when such transformation is approxi-
mate.

3.4 Choice of learning rate sequence

An interesting observation on the asymptotic variance results
(18) is that for any choice of the symmetric positive-definite
matrix C ,

(2CI(θ�) − I)−1CI(θ�)Cᵀ ≥ I(θ�)
−1, (27)

where A ≥ B for two matrices A, B indicates that A − B
is nonnegative-definite. Even in second-order form, both
methods incur an efficiency loss when compared to the
maximum-likelihood estimator, which can be quantified
exactly through (18). Thus, there are two ways to achieve
asymptotic efficiency. First, one can design the condition
matrix such that nCn → I(θ�)

−1 � C�.5 However, this
requires knowledge of the Fisher information matrix on the
true parameters θ�, which is usually unknown. The Ven-
ter process (Venter 1967) was the first method to follow an
adaptive approach to estimate this matrix, and was later ana-
lyzed and extended by several other authors (Fabian 1973;
Lai and Robbins 1979; Amari et al. 2000; Bottou and Le Cun
2005). Adaptive methods that perform an approximation of
the matrix C� (e.g., through a Quasi-Newton scheme) have
recently been applied with considerable success (Schrau-
dolph et al. 2007; Bordes et al. 2009); see Sect. 3.5.2 for
more details.

In contrast, an efficiency loss is generally unavoidable in
first-order SGD i.e., whenCn = an I with nan → α. Asymp-
totic efficiency can occur only when λi = 1/α i.e., when
all eigenvalues λi of the Fisher information matrix I(θ�)

are identical. When λi ’s are distinct the eigenvalues of the
asymptotic variance matrix nVar(θ sgdn ) (or nVar(θ imn )) are
α2λi/(2αλi − 1) which is at least 1/λi for any α. In this
case, one reasonable way to set the parameter α would be
to minimize the trace of the asymptotic variance matrix i.e.,
solve

α̂ = argmin
α

∑

i

α2λi/(2αλi − 1), (28)

under the constraint that α > 1/(2λmin), thus making an
undesirable but necessary comprise for convergence in all
parameter components. However, the eigenvalues {λi } are
unknown in practice and need to be estimated from the
data. This problem has received significant attention recently
and several methods exist (see Karoui 2008, and references

5 Similarly, a sequence of matrices Cn can be designed such that Cn →
I(θ�)

−1 (Sakrison 1965).

within). A powerful alternative is to reparametrize the prob-
lem, apply SGD on the new parameter space, and then
perform the inverse transformation, as in Sect. 3.3.

3.4.1 Practical considerations

There is voluminous amount of research literature on learn-
ing rate sequences for stochastic approximation and SGD.
However, we decided to discuss this issue at the end of this
section because the choice of the learning rate sequence con-
flates multiple design goals that are usually conflicting in
practice, e.g., convergence (or bias), asymptotic variance,
stability and so on.

In general, the theory presented so far indicates that the
learning rate for first-order explicit SGD should be of the
form an = α(αβ + n)−1. Note that limn→∞ nan = α, so α

is indeed the learning rate parameter introduced in Sect. 1.
Parameter α will control the asymptotic variance and a rea-
sonable choice would be the solution of (28), which requires
estimates of the eigenvalues of the Fisher information matrix
I(θ�). An easier method is to simply use α = 1/λmin , where
λmin is theminimumeigenvalue ofI(θ�); the value 1/λmin is
an approximate solution for (28), and also has good empir-
ical performance (Xu 2011; Toulis et al. 2014). Parameter
β can be used to stabilize explicit SGD. In particular, one
would want to control the variance of the stochastic gradi-
ent Var

(∇�(θn; yn)
) = I(θ�) + O(an), for points near θ�;

see also the stability analysis in Sect. 3.2. One reasonable
value would thus be β = trace(I(θ�)), which can be esti-
mated easily by summing norms of the score function, i.e.,
β̂ = ∑n

i=1 ||∇�(θ i ; yi )||2, similar to (Amari et al. 2000;
Duchi et al. 2011)—see also Sect. (3.5.2).

For implicit SGD, the situation is a bit easier because a
learning rate sequence an = α(α + n)−1 works well in prac-
tice (Toulis et al. 2014). As before, α controls the efficiency
of the method and so we can set α = 1/λmin as in explicit
SGD. The additional stability term (β) in explicit SGD is
unnecessary because the implicit method performs such nor-
malization (shrinkage) indirectly—see Eq. (4).

However, tuning the learning rate sequence eventually
depends on problem-specific considerations, and there is a
considerable variety of sequences that have been employed
in practice (George and Powell 2006). Principled design of
learning rates in SGD remains an important research topic
(Schaul et al. 2012).

3.5 Some interesting extensions

3.5.1 Averaged stochastic gradient descent

Estimation with SGD can be optimized for statistical effi-
ciency only with knowledge of the underlying model. For
example, the optimal learning rate parameter α in first-order
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SGD requires knowledge of the eigenvalues of the Fisher
information matrix I(θ�). In second-order SGD, optimal-
ity is achieved when one uses a sequence of matrices Cn

such that nCn → I(θ�)
−1. Methods that approximateI(θ�)

make up a significant class of methods in stochastic approxi-
mation. Another important class of stochastic approximation
methods relies on averaging of the iterates. The correspond-
ing SGD procedure is usually referred to as averaged SGD,
or ASGD for short.6

Averaging of iterates in the Robbins–Monro procedures
was studied independently by Ruppert (1988) and Bather
(1989), and both proposed similar averaging schemes. If we
use the notation of Sect. 2 (see also iteration (6)), Ruppert
(1988) considered the following stochastic approximation
procedure

θn = θn−1 − an yn,

θ̄n = 1

n

n∑

i=1

θi , (29)

where an = αn−c for 1/2 < c < 1 and θ̄n are the esti-
mates of the zero of the regression function M(θ). Under
certain conditions, Ruppert (1988) showed that nVar(θ̄n) →
σ 2/M ′(θ�)

2,whereσ 2 = Var (yn| θ�). Recall, that the typical
Robbins–Monro procedure gives estimates with asymptotic
variance α2σ 2/(2αM ′(θ�) − 1), which is at least equal to
the variance of the averaged iterate. Ruppert (1988) pro-
vides a nice statistical intuition on why averaging gives
such efficiency with larger learning rates. First, write yn =
M(θn) − εn , where εn are zero-mean independent random
variables with finite variance. The typical analysis in sto-
chastic approximation starts by solving the recursion (6) to
get an expression like the following

θn − θ� =
n∑

i=1

c(i, n)aiεi + o(1), (30)

where c(i, n) = exp{−A(n)+ A(i)}, A(m) = K
∑m

j=1 a j is
the function of partial sums, and K is some constant. Ruppert
(1988) shows that Eq. (30) can be rewritten as

θn − θ� = an

n∑

i=b(n)

c(i, n)εi + o(1), (31)

where b(n) = �n−Rnc log nwith R a positive constant, and
�· the positive integer floor function. Ruppert (1988) argues
that when an = α/n then b(n) = O(1), and θn − θ� is the

6 The acronym ASGD is also used in machine learning to denote asyn-
chronous SGD i.e., a variant of SGD that can be parallelized onmultiple
machines. We will not consider this variant here.

weighted average of all noise variables εn . When an = αn−c

for 1/2 < c < 1, then θn − θ� is a weighted average of
only O(nc log n) noise variables. Thus, in the former case
there is significant autocorrelation in the series θn . In the
latter case, for 0 < p1 < p2 < 1 the variables θ�p1n and
θ�p2n are asymptotically uncorrelated, and thus averaging
improves the estimation efficiency.

Polyak and Juditsky (1992) derive further significant
results for averaged SGD, showing in particular that ASGD
can be asymptotically efficient as second-order SGD under
certain mild assumptions. In fact, due to the authors’ prior
work in averaged stochastic approximation, ASGD is usually
referred to asPolyak-Ruppert averaging scheme.Adoption of
averaging schemes for statistical learning has been slow but
steady over the years (Zhang 2004; Nemirovski et al. 2009;
Bottou 2010; Cappé 2011). One practical reason is that aver-
aging only helps when the underlying stochastic process is
slow to converge, which is hard to know in practice; in fact,
averaging can have an adverse effect when the underlying
SGD process is converging well. Furthermore, the selection
of the learning rate sequence is also important in ASGD,
and a bad sequence can cause the algorithm to converge very
slowly (Xu 2011), or even diverge. Research on ASGD is
still ongoing as several directions, such as the combination of
stable methods with averaging schemes, remain unexplored
(e.g., stochastic proximal methods, implicit SGD). Further-
more, in a similar line of work, several methods have been
developed that use averaging in order to reduce the variance
of stochastic gradients (Johnson and Zhang 2013;Wang et al.
2013).

3.5.2 Second-order stochastic gradient descent

Sakrison’s recursive estimation method (9) is the archetype
of second-order SGD, but it requires an expensive matrix
inversion at every iteration. Several methods have been
developed that approximate such a matrix across itera-
tions in stochastic approximation, and are generally termed
adaptive. Early adaptive methods in stochastic approxi-
mation were given by Nevelson and Khasminskiı̆ (1973)
and Wei (1987); translated into a SGD procedure, such
methods would recursively estimate I(θ�) by computing
finite-differences y jn,+ − y jn,− sampled at θn + cne j and
θn − cne j , respectively, where e j is the j th unit basis vec-
tor and cn is an appropriate sequence of positive numbers.
While such methods are very useful in sequential experi-
ment design where one has control over the data generation
process, they are impractical for modern online learning
problems.

A simple and effective approach was proposed by Amari
et al. (2000). The idea is to keep an estimate În of I(θ�) and
use an explicit SGD scheme as follows:
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În = (1 − cn)În−1 + cn∇�(θn−1; yn)∇�(θn−1; yn)ᵀ,

θn = θn−1 + Î−1
n ∇�(θn−1; yn). (32)

Inversion of the estimate În is (relatively) cheap by using the
Sherman-Morrison formula. This scheme, however, intro-
duces the additional problem of determining the sequence cn
in (32). In their work, Amari et al. (2000) advocated for a
small constant cn = c > 0 that can be determined through
computer simulations.

Another notable approach based on Quasi-Newton meth-
ods (see Sect. 1) was developed byBordes et al. (2009). Their
method, termed SGD-QN, approximates the Fisher informa-
tionmatrix through a secant condition as in the originalBFGS
algorithm (Broyden 1965). The secant condition in SGD-QN
is

θn−θn−1≈ Î−1
n−1

[∇�(θn; yn)−∇�(θn−1; yn)
]

� Î−1
n−1δn,

(33)

where În is kept diagonal. If we let Dn denote the diagonal
matrix with i th diagonal element dii = (θn,i − θn−1,i )/δn,i ,
then the update of the approximation matrix in SGD-QN is
given by

În ← În−1 + 2

r
(Dn − În−1), (34)

and the update of θn is similar to (32). The parameter r is
controlled internally in the algorithm, and counts the number
of times the update (34) has been performed.

A notable second-order method is also AdaGrad (Duchi
et al. 2011), which adapts multiple learning rates using gra-
dient information. In one popular variant of the method,
AdaGrad keeps a diagonal (p × p) matrix An of learning
rates that are updated at every iteration. Upon observing data
yn , AdaGrad updates An as follows:

An = An−1 + diag(∇�(θn−1; yn)∇�(θn−1; yn)ᵀ), (35)

where diag(A) is the diagonal matrix with the same diagonal
as its matrix argument A. Learning in AdaGrad proceeds
through the iteration

θn = θn−1 + αA−1/2
n ◦ ∇�(θn−1; yn), (36)

whereα > 0 is a learning rate parameter that is shared among
all parameter components, and the symbol ◦ denotes elemen-
twise multiplication. The original motivation for AdaGrad
stems from proximal methods in optimization, but there is
a statistical intuition why the update (36) is reasonable. In
general, from an information perspective, a learning rate
sequence an discounts an observation yn according to the

reciprocal of the statistical information that has been gath-
ered so far for the parameter of interest θ�. The intuition
behind a rate of the form an = α/n is that the infor-
mation after n iterations is proportional to n, under the
i.i.d. data assumption. In many dimensions where some
parameter component affects outcomes less frequently than
others, AdaGrad replaces the term n with an estimate of
the information that has actually been received for that
component. A (biased) estimate of this information is pro-
vided by the elements of An in (36), and is justified since
E

(∇�(θ; yn)∇�(θ; yn)ᵀ
) = I(θ). Interestingly, implicit

SGD and AdaGrad share the common property of shrinking
explicit SGD estimates according to the Fisher information
matrix. Second-order implicit SGD methods are yet to be
explored, but further connections are possible.

3.5.3 Monte-Carlo stochastic gradient descent

A key requirement for the application of SGD procedures is
that the likelihood is easy to evaluate. However, in many sit-
uations that are important in practice, this is not possible, for
example when the likelihood is only known up to a normaliz-
ing constant. In such cases, definitions (10) and (11) cannot
be applied directly since ∇�(θ; yn) cannot be computed.
However, if unbiased samples of the log-likelihood gradi-
ents are available, then explicit SGD can be readily applied.
This is possible if sampling from the model is relatively easy.

In particular, assume an exponential family model (12)
that is easy to sample from, e.g., through Metropolis-
Hastings. A variant of explicit SGD, termed Monte-Carlo
SGD (Toulis and Airoldi 2014), can be constructed as fol-
lows. Starting from some estimate θmc

0 , iterate the following
steps for each nth data point yn , where n = 1, 2, . . . , N :

1. Get m samples from the model ỹi ∼ f (·; θmc
n−1), i =

1, 2, . . . ,m.
2. Compute average sufficient statistic s̃n = (1/m)

∑m
i=1

s( ỹi ).
3. Update the estimate through

θmc
n = θmc

n−1 + Cn(s( yn) − s̃n). (37)

The main idea of a Monte-Carlo SGD algorithm (37) is to
use the current parameter estimate in order to impute the
expected value of the sufficient statistic that would otherwise
be available if the likelihood was easy to evaluate. Further-
more, assuming nCn → C , the asymptotic variance of the
estimate satisfies

nVar
(
θmc
n

) → (1 + 1/m) · (2CI(θ�) − I)−1CI(θ�)Cᵀ,

(38)
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which exceeds the variance of the typical explicit SGD esti-
mator by a factor of (1 + 1/m). However, in its current
form the Monte-Carlo SGD (37) is only explicit; an implicit
version would require to sample data from the next iter-
ate, which is technically challenging but an interesting open
problem. Still, an approximate implicit implementation of
Monte-Carlo SGD is possible using the intuition in Eq. (4).
For example, one could simply run an explicit update as in
(37), but then shrink according to (I+anI(θmc

n ))−1, or more
efficiently using a one-dimensional shrinkage factor (1 +
an trace(I(θmc

n )))−1, for some decreasing sequence an > 0.
Theoretically Monte-Carlo SGD is based on sampling-

controlled stochastic approximation methods in which the
usual regression function of the Robbins–Monro procedure
(6) is only accessible through sampling (Dupuis and Simha
1991), e.g., throughMCMC. Convergence in such settings is
subtle because it also depends on the ergodicity of the under-
lying Markov chain (Younes 1999). In practice, approximate
variants of the aforementioned Monte-Carlo SGD proce-
dure have been applied with considerable success to fit large
models of neural networks, notably through the contrastive
divergence algorithm, as we briefly discuss in Sect. 4.4.

4 Selected applications

SGDhas found several important applications over the years.
In this section we will review some of them, giving a prefer-
ence to breadth over depth.

4.1 Online EM algorithm

The Expectation–Maximization algorithm (Dempster et al.
1977) is a numerically stable procedure to compute the
maximum-likelihood estimator in latent variable models.
Extending our notation, let xn denote a latent variable
at observed-data point yn , and let fcom(xn, yn; θ) and
fobs( yn; θ) denote the complete-data and observed-data den-
sity, respectively; similarly, �com and �obs will denote the
respective log-likelihoods. For simplicity, we will assume
that fcom is an exponential family model in the natural para-
meterization, as in (12), such that

fcom(xn, yn; θ)=exp
{
s(xn, yn)

ᵀθ − A(θ)+B(xn, yn)
}
.

(39)

We will denote the corresponding Fisher information matri-
ces as Icom(θ) = −E

(∇∇�com(xn, yn; θ)
)
and Iobs(θ) =

E
(∇∇�obs( yn; θ)

)
, where the expectations are considered

with model parameters fixed at θ . Furthermore, let Y =
( y1, . . . , yN ) denote the entire observed dataset as in Sect.
1, and X = (x1, . . . , xN ) be the corresponding latent vari-
ables. The traditional EM algorithm proceeds by iterating the
following steps.

Q(θ, θn;Y) = E (�com(X,Y ; θ)| θn,Y), E − step

(40)

θn+1 = argmax
θ

Q(θ , θn;Y). M − step

(41)

Dempster et al. (1977) showed that the EM algorithm con-
verges to the maximum-likelihood estimator θ̂ = argmaxθ

�obs(Y ; θ); furthermore, they showed that EM is an ascent
algorithm i.e., the likelihood is strictly increasing at each
iteration, and thus EM has a desirable numerical stability.
However, the EM algorithm is impractical for the analysis of
large datasets because it involves expensive operations, both
in the expectation andmaximization steps that need to be per-
formed on the entire dataset. Therefore, online schemes are
necessary for analysis of large models with latent variables.

Titterington (1984) considered a procedure defined
through the iteration

θn = θn−1 + anIcom(θn−1)
−1∇�obs( yn; θn−1). (42)

This procedure differs only marginally from Sakrison’s
recursive estimation method (see Sect. 2.2) by using the
complete-data information matrix. In the univariate case
where the true model parameter is θ�, Titterington (1984)
applied Fabian’s theorem (Fabian 1968) to show that the
estimate in (42) satisfies

√
n(θn − θ�) ∼ N (0, Icom(θ�)

−2

Iobs(θ�)/(2Iobs(θ�)Icom(θ�)
−1 − 1). Thus, as in the tradi-

tional full-data EM algorithm, the efficiency of the online
method (42) depends on the amount of missing information.
Notably, Lange (1995) considered Newton–Raphson itera-
tions for the M-step of the EM algorithm, and derived an
online procedure that is similar to (42).

However, procedure (42) is essentially an explicit stochas-
tic gradient method, and thus it may have serious stability
and convergence problems, contrary to the desirable numer-
ical stability of EM. In the exponential family model (39),
Nowlan (1991) considered one of the first “true” online EM
algorithms as follows:

sn+1 = sn + αE
(
s(xn, yn; θn)

∣
∣ θn, yn), E − step

θn+1 = argmax
θ

�com(sn+1; θ), M − step

(43)

where α ∈ (0, 1). In words, the algorithm starts from some
initial sufficient statistic s0 and then updates it through a
stochastic approximation schemewith a constant-step size α.
The maximization step is identical to that of traditional EM.
Online EM with decreasing step sizes was later developed
by Sato and Ishii (2000) as follows:
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sn+1 = sn + an
[
E

(
s(xn, yn; θn)

∣
∣ θn, yn) − sn

]
, E − step

θn+1 = argmax
θ

�com(sn+1; θ). M − step

(44)

By the theory of stochastic approximation, procedure (44)
will converge to the observed-datamaximum-likelihood esti-
mate θ̂ . In contrast, procedure (43) will not converge with
a constant α, but it will reach a point in the vicinity of θ̂

more rapidly than (44). Further extensions of the aforemen-
tioned online EM algorithms have been developed by several
authors (Neal and Hinton 1998; Cappé and Moulines 2009).
Examples of a growing body of applications of suchmethods
can be found in (Neal and Hinton 1998; Sato and Ishii 2000;
Liu et al. 2006; Cappé 2011).

4.2 MCMC sampling

Let θ be the model parameters of observations Y =
( y1, · · · yN ), with an assumed prior distribution denoted by
π(θ). A common task in Bayesian statistics it to sample
from the posterior distribution f (θ |Y) ∝ π(θ) f (Y |θ). The
Hamiltonian Monte-Carlo (HMC) (Neal 2011) is a method
in which auxiliary variables p are introduced to the original
variables θ to improve sampling from f (θ |Y). In the aug-
mented parameter space, we consider a function H(θ , p) =
U (θ) + K ( p) ∈ R

+, where U (θ) = − log f (θ |Y) and
K ( p) = (1/2) pᵀM p with a symmetric positive-definite
matrix M. Next, we consider the density

h(θ , p|Y) = exp{−H(θ , p)} = exp{−U (θ) − K ( p)}
= f (θ |Y) × N ( p, M−1).

In this parameterization, the variables p are independent of
θ . Assuming some initial state (θ0, p0), HMC sampling pro-
ceeds in iterations indexed by n = 1, · · · , as follows:

1. Sample p∗ ∼ N (0, M−1).
2. Using Hamiltonian dynamics, compute (θn, pn) =

ODE(θn−1, p∗).
3. Perform a typical Metropolis-Hastings step for the pro-

posed transition (θn−1, p∗) → (θn, pn)with acceptance
probability that is equal to min[1, exp(−H(θn, pn) +
H(θn−1, p∗)].

Step 2. is the key idea in HMC. The variables (θ , p) can
be mapped to a physical systemwhere θ is the position of the
system, and p is the momentum. The Hamiltonian dynamics
refer to a set of ordinary differential equations (ODE) that
govern the movement of the system, and thus calculate the
future values of (θ , p) given a pair of current values. Being
a closed physical system, the Hamiltonian of the system is

constant. Thus, in Step 3. of HMC it holds −H(θn, pn) +
H(θn−1, p∗) = 0, and thus the acceptance probability is one.

A special case ofHMC, calledLangevin dynamics, defines
the sampling iterations as follows (Girolami and Calderhead
2011):

ηn ∼ N (0, ε I),

θn = θn−1 + ε

2
(∇ logπ(θn−1) + log f (θn−1;Y)) + ηn .

(45)

The sampling procedure (45) follows fromHMCby a numer-
ical solution of the ODE method in Step 2. of the algorithm
using the leapfrog method. Parameter ε > 0 determines the
size of the leapfrog in the numerical solution of Hamiltonian
differential equations.

Welling and Teh (2011) studied a simple modification of
Langevin dynamics (45) using a stochastic gradient as fol-
lows:

ηn ∼ N (0, εn),

θn = θn−1 + εn

2

(

∇ logπ(θn−1) + (N/b)

×
∑

i∈batch
∇ log f ( yi |θn−1)

)

+ ηn . (46)

The step sizes εn satisfy the typical requirements in sto-
chastic approximation i.e.,

∑
εi = ∞ and

∑
ε2i < ∞.

Procedure (46) is using stochastic gradients averaged over
a mini-batch of b samples that are usually employed in SGD
to reduce noise in the stochastic gradients. Notably, Sato and
Nakagawa (2014) proved that procedure (46) converges to
the true posterior f (θ |Y) with an elegant use of stochas-
tic calculus. Sampling through stochastic gradient Langevin
dynamics has since generated a lot of significant work in
MCMC sampling for very large datasets, and it is still a
rapidly expanding research area with contributions from var-
ious disciplines (Hoffman et al. 2013; Pillai and Smith 2014;
Korattikara et al. 2014).

4.3 Reinforcement learning

Reinforcement learning is themultidisciplinary study of how
autonomous agents perceive, learn, and interact with their
environment (Bertsekas and Tsitsiklis 1995). Typically, it is
assumed that time t proceeds in discrete steps and at every
step an agent is at state xt ∈ X , where X is some state
space. Upon entering a state xt two things happen. First, an
agent receives a probabilistic reward R(xt ) ∈ R, and then
takes an action a ∈ A, where A denotes the action-space.
This action is determined by the agent’s policy, which is a
function π : X → A, thus mapping a state to an action.
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Nature then decides a transition to state xt+1 through a den-
sity p(xt+1|xt ) that is unknown to the agent.

One important task in reinforcement learning is to estimate
the value function V π (x)which quantifies the expected value
of a specific state x ∈ X for an agent. This is defined as

V π (x) = E (R(x)) + γE (R(x1)) + γ 2
E (R(x2)) + · · · ,

(47)

where xt denotes the state that will be reached starting at x
after t transitions, and γ ∈ (0, 1) is a parameter that discounts
future rewards. Note that the variation of R(xt ) includes the
uncertainty of the state xt because of the stochasticity in
transitions, and the uncertainty from the reward distribution.
Thus, V π (x) admits a recursive definition as follows:

V π (x) = E (R(x)) + γE
(
V π (x1)

)
. (48)

When the state is a high-dimensional vector, one popular
approach is to use the linear value approximation V (x) =
θ�

ᵀφ(x), where φ(x)maps a state to features in a space with
fewer dimensions, and θ� is a vector of fixed parameters. If
an agent is at state xt , then the recursive equation (48) can
be rewritten as

E
(
R(xt ) − (θ�

ᵀφt − γ θ�
ᵀφt+1)

∣
∣ φt ) = 0, (49)

where we setφt = φ(xt ) for notational convenience. Similar
to SGD, this suggests a stochastic approximation method to
estimate θ� through the following iteration:

θ t+1 = θ t + at
[
R(xt ) − (

θ
ᵀ
t φt − γ θ

ᵀ
t φt+1

)]
φt , (50)

where at is a learning rate sequence that satisfies the
Robbins–Monro conditions (see Sect. 2.1). Equation (50)
is known as the temporal differences (TD) learning algo-
rithm (Sutton 1988). Implicit versions of this algorithm have
recently emerged inorder to solve someof the knownstability
issues of the classical TD algorithm (Schapire and Warmuth
1996; Li 2008;Wang andBertsekas 2013; Tamar et al. 2014).
For example, Tamar et al. (2014) consider computing the term
θ

ᵀ
t φt at the future iterate, and thus the resulting implicit TD

algorithm is

θ t+1 = (I + atφtφ
ᵀ
t )−1 [

θ t + at (R(xt ) + γ θ
ᵀ
t φt+1)φt

]
.

(51)

Similar to implicit SGD, iteration (51) stabilizes the TD itera-
tions.With the advent of online multiagent markets, methods
and applications in reinforcement learning have been receiv-
ing a renewed stream of research effort (Gosavi 2009).

4.4 Deep learning

Deep learning is the task of estimating parameters of sta-
tistical models that can be represented by multiple layers of
nonlinear operations, such as neural networks (Bengio 2009).
Such models, also referred to as deep architectures, consist
of units that can perform a basic prediction task, and are
grouped in layers such that the output of one layer forms the
input of another layer that sits directly on top. Furthermore,
in most situations themodels are augmented with latent units
that are defined to represent structured quantities of interest,
such as edges or shapes in an image.

One basic building block of deep architectures is the
Restricted Boltzmann Machine (RBM). The complete-data
density for an observation (x, y) of the states of hidden and
observed input units, respectively, is given by

P(x, y; θ) = exp{−b′ y − c′x − x′W y}
Z(θ)

, (52)

where θ = (b, c,W) are the model parameters, and the nor-
malizing constant is Z(θ) = ∑

x, y exp{−b′ y−c′x−x′W y}
(also known as the partition function). Furthermore, the sam-
ple spaces for x and y are discrete (e.g., binary) andfinite. The
observed-data density is thus P( y; θ) = ∑

x P(x, y; θ). Let
H(x, y; θ) = b′ y + c′x + x′W y, such that P(x, y; θ) =
e−H(x, y;θ)

Z(θ)
. Through simple algebra one can obtain the log-

likelihood of an observed sample yobs in the following
convenient form:

∇�(θ; yobs)=−[
E (∇H(x, y; θ))−E (∇H(x, y; θ)| yobs)] .

(53)

In practical situations, the data x, y are binary. Therefore,
the conditional distribution of the missing data x| y is readily
available through the usual logistic regression GLM model,
and thus the second term of (53) is easy to sample from.
Similarly, y|x is easy to sample from. However, the first
term in (53) requires sampling from the joint distribution of
the complete-data (x, y), which conceptually is easy to sam-
ple from using the aforementioned conditionals and a Gibbs
sampling scheme (Geman and Geman 1984). However, the
state space for both x and y is usually very large, e.g., com-
prised of thousands or millions of units, and thus a full Gibbs
on the joint distribution is usually impossible.

The method of contrastive divergence (Hinton 2002;
Carreira-Perpinan and Hinton 2005) has been applied for
training such models with considerable success. The algo-
rithm proceeds as follows for steps i = 1, 2, . . .:

1. Sample one state y(i) from the empirical distribution of
observed states.

2. Sample x(i)| y(i) i.e., the hidden state.
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3. Sample y(i,new)|x(i).
4. Sample x(i,new)| y(i,new).
5. Evaluate the gradient (53) using (x(i), y(i)) for the second

term, and the sample (x(i,new), y(i,new)) for the first term.
6. Update the parameters in θ using constant-step size SGD

and the estimated gradient from Step 4.

In other words, contrastive divergence estimates both terms
of (53). This estimation is biased because (x(i,new), y(i,new))

is assumed to be from the full joint distribution of (x, y). In
fact, contrastive divergence might operate in k steps in which
the Steps 3–4 are repeated k times, in an effort to approximate
the joint distribution better by letting the chain run longer.
Although in theory larger k should approximate the full joint
better, it has been observed that k = 1 is enough for good
performance in many learning tasks (Hinton 2002; Taylor
et al. 2006; Salakhutdinov et al. 2007; Bengio 2009; Bengio
and Delalleau 2009).
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