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Transient and stationary phase

Iterative procedures in stochastic optimization are typically comprised of a

transient phase and a stationary phase.

In the transient phase the procedure converges towards a region of interest.

During the stationary phase the procedure oscillates in that region,

commonly around a single point.

Understanding when the phase transition happens is crucial for

implementation and for improving empirical performance.

Our focus here will be stochastic gradient descent (SGD) procedures, but

our results may be more general.
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Stochastic gradient descent (SGD)

Statistical estimation gave a new form of optimization problems:

θ? = argmin
θ

`(θ) = argmin
θ

N∑
i=1

li(θ),

where ` is loss function; li is loss for ith datapoint only.

Classical optimization methods, such as gradient descent,

θn = θn−1 − γn∇`(θn−1),

fail when gradient computation is expensive (e.g., N large).

SGD has emerged as one of the most versatile optimization methods:

θn = θn−1 − γn∇lJ(θn−1),

where J ∼ Unif[1, 2, . . . , N ].

By SA theory . , θn → θ∞ such that: E (∇lJ(θ∞)) = 0⇒ θ∞ = θ?.
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SGD with constant step size

While decreasing step size converges (in theory) it produces several problems: (1)

sensitivity to misspecification; (2) slow rate of convergence – O(1/N).

SGD with constant step size behaves differently:

θn = θn−1 − γ∇lJ(θn−1).

� “Convergence” is much faster...
� ..but not real convergence! Actually converges to region of radius O(

√
γ)

that contains θ?, and then oscillates in this region.

We will try to identify when SGD reaches the convergence region:

� Pointless to run the procedure beyond that point.
� Can improve the procedure by detecting convergence and then updating it

(e.g., decrease the step size).
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Illustration: SGD with constant step size
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An intuition for such behavior is in the following meta-theorem:

Theorem ( Zhang, 2004); (Moulines and Bach, 2011); (Needell et. al., 2014)

There are positive constants Aγ , B such that, for every n, it holds that

E
(
||θn − θ?||2

)
≤ E

(
||θ0 − θ?||2

)
e−Aγn +Bγ.

For example, Aγ ≈ γµ/4− γ2L2, where µ,L are strong convexity and

Lipschitz constant of expected loss, resp; B = σ2/µ, where σ2 is noise

level.

Transient phase: SGD forgets initial conditions exponentially fast.

Stationary phase: SGD oscillates around θ? at a region of radius O(
√
γ).

Trade-off: large γ speeds up convergence but increases oscillation radius;
small γ decreases the radius but convergence is slower.

Despite valuable theoretical insights such results offer limited guidance in

practice for detecting convergence (bound may not be tight; parameters

µ,L, σ2 hard to estimate).
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Related work

The idea of transient/stationary phases (also known as search/convergence

phases) has been expressed before (e.g., Murata, 1998).

In optimization, a typical approach is to stop when ||θn − θn−1|| is small
according to some threshold, or when updates of the loss function have

reached machine precision (Ermoliev and Wets, 1998; Bottou et. al.,

2016). Ignores noise from stochastic gradients.

Large literature on convergence diagnostics of Monte Carlo Markov

Chains (Cowles, 1996). Different setting but shares common

characteristics with our problem here.

Pflug has made seminal contributions in the theory of stopping times in

stochastic approximations (1998, 1990). Our work here is heavily

influenced by Pflug’s work.
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Pflug’s convergence diagnostic (high-level idea)

(Left) In transient phase gradient is auto-correlated: successive gradients

generally point to same direction.

(Right) In convergence phase successive gradients are more likely to point

to opposite direction.

Running average of inner product of successive gradients will thus be our

test statistic.
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Convergence diagnostic algorithm

Let ∇ln = stoch. gradient at nth iteration (depends on sampled yn and θn−1).

1: S0 ← 0
2: θ1 ← θ0 − γ∇l1
3: for all n ∈ {2, 3, · · · } do
4: θn ← θn−1 − γ∇ln.
5: Sn ← Sn−1 +∇l>n∇ln−1 #running sum of inner product

6: if n > burnin and Sn < 0 then
7: return n #declare convergence

8: end if

9: end for

Variable burnin = O(1/γ).

Several variations of the algorithm are possible; e.g., discount old

iterations in running sum.
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Quadratic loss model: first intuition

Let x =features, y = outcomes; we focus on quadratic loss where

`(y, x; θ) = (1/2)(y − x>θ)2 and ∇`(y, x; θ) = −(y − x>θ)x.

Suppose that θ0 = θ?. Let yn − x>n θ? = εn, where εn are zero-mean r.v.
given xn. Then,

θ1 = θ? + γ(y1 − x>1 θ?)x1 = θ? + γε1x1,

from which it follows that

S2 − S1 = (y2 − x>2 θ1)(y1 − x>1 θ0)x
>
2 x1 = (ε2 − γε1x

>
2 x1)ε1x

>
2 x1.

E (S2 − S1) = −γE
(
ε21
)
E
(
(x>2 x1)

2
)
< 0. (1)

Thus, the diagnostic is decreased in expectation, and by LLN (and a

property of upper-boundedness) it will eventually become negative.
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Theorem

For quadratic loss, let x1 and x2 be two iid vectors from the distribution of x,
and define: σ2 = E

(
(y − x>θ?)

2
)
; c2 = E

(
(x>1 x2)

2
)
; C = E

(
x1x

>
2 (x

>
1 x2)

)
;

D = E
(
x1x

>
1 (x

>
1 x2)

2
)
, and suppose that all are finite. Then, for γ > 0,

∆n(θ) = E (Sn+2 − Sn+1|θn = θ)

= (θ − θ?)
>(C − γD)(θ − θ?)− γc2σ2.

Boundary surface of expected sign increase of test statistic is an ellipse.

When θ = θ? we have expected decrease (good!).

Interesting dynamics:

� Bias term contributes positive values to test statistic. Reasonable because

bias pushes SGD iterates to θ?.
� Error term contributes negative values to statistic. Reasonable because error

pushes SGD iterates away from θ?.
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Assume y ∼ N (x>θ?, σ
2); x ∼ N (0, I2); θ? = (0.47, 0.22); σ2 = 3.
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Figure: Green center: Pflug diagnostic decreased in expectation. Blue polygon:

oscillation region of SGD iterates (empirically calculated). Color legend: values of

expected increase (or decrease) of the diagnostic.
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Equicorrelated case: cor(x1, x2) = ρ ∈ [0, 0.2, 0.4, 0.6].
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Ill conditioning: Var(x1) = 1,Var(x2) ∈ [0.1, 0.3, 0.5, 0.8].
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Simulated study

p = 20 dimensions; θ?,j = 10e−0.7j ; σ = 3; N = 5000 data points;
Let En = ||θn − θ?||2 and τ be when the test diagnostic is activated.
We store (γ, τ, E0, Eτ/2, E2τ ).

Eτ/2 = βτ/2E0 + ε E2τ = β2τE0 + ε

γ βτ/2 β2τ
0.02 0.17 ** 0.01 .

0.05 0.20 *** −0.008
0.1 0.09 ** −0.0007
0.2 0.06 ** 0.005

0.5 0.09 *** −0.008
1.0 0.06 * 0.02 *

2.0 0.06 ** 0.009

5.0 0.07 ** −0.012

Table shows that diagnostic behaves as intended: conditional on activated

diagnostic the distance to θ? is uncorrelated with initial distance.
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Sensitivity and Implicit update

Pflug diagnostic and main SGD procedure are sensitive to misspecification

of step size γ.

One way to alleviate such sensitivities is to use the SGD procedure with an

implicit update (ISGD):

θn = θn−1 − γ∇lJ(θn).

For quadratic loss the implicit update is equivalent to:

θn =
1

1 + γ||xn||2
(θn−1 + γynxn).

Note: Implicit update is more easily applicable than usually assumed in

practice (Toulis et.al., 2014) – straightforward, and essentially costless

computationally, for generalized linear models, M-estimation, hazards.

Implicit SGD procedures are statistically equivalent to explicit ones, but

remarkably more robust numerically (Toulis and Airoldi, 2017).

(more details on implicit computation . ; relation to Bayesian interpretation . , or proximal optimization . )
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Implicit update

Theorem

Let λγ = E
(
1/(1 + γ||x||2)

)
∈ (0, 1] and ∆im

n (θ) = E (Sn+2 − Sn+1|θn = θ).
Then, it holds that

∆im
n (θ) = aγ∆n(θ) + bγ

[
(θ − θ?)

>D(θ − θ?) + σ2c2
]
,

where ∆n(θ) is the expected increase for the explicit update, aγ = λ2
γ , and

bγ = γλ2
γ(1− λγ).

Consider, for example, γ =∞ so that λγ = 0. In classical SGD the

diagnostic increases without bound and convergence fails.

With implicit update we have ∆im
n (θ) ≈ 0, and convergence may happen.

In contrast, when γ ≈ 0 then λγ ≈ 1 and so ∆im
n (θ) ≈ ∆n(θ), and implicit

diagnostic behaves as the explicit one.
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Summary regarding Pflug diagnostic

Diagnostic activation region can be obtained in closed form for quadratic

loss (and, more generally, for generalized linear models – not shown here).

Activation region empirically coincides with actual stationary region.

Distance ||θn − θ?||2 empirically uncorrelated with initial distance

conditional on diagnostic being activated.

Implicit update offers a more reliable version of the diagnostic.

Performance is hurt by ill conditioning and poor initialization (ongoing

work).

Panos Toulis, U Chicago Convergence diagnostics for SGD 18 / 25



Application: ISGD1/2

We discuss one application of the diagnostic to define a version of SGD

that converges to θ? in linear time.

The idea is simply to reduce the step size (e.g., halve, γ ← γ/2) each time
convergence is detected.

We call this procedure ISGD1/2. We do not have a theoretical analysis of

its performance, only of its parts (ISGD with constant step size and Pflug

diagnostic).
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Illustration of ISGD1/2
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Experimental setup for ISGD1/2

We compare ISGD1/2 against SVRG and ISGD on simulated data.

We consider high and low dimension settings as p = 150 and p = 10,
respectively.

We consider high and low signal to noise ratio (SNR) settings as SNR = 5
and SNR = 2, where SNR = trace(Var(x))/pVar(y|x).

We fix θ? such that θ?,j = 10e−0.75j ; we set N = 5000.

We sample xi ∼ Np(0, I), where i = 1, 2, . . . N .

We sample yi ∼ N (x>i θ?, σ
2) for normal model, and

yi ∼ Binom(exp(x>i θ?)/(1 + exp(x>i θ?)) for logistic model.
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ISGD1/2 on normal model
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ISGD1/2 attains comparable

performance to SVRG. Still, SVRG is

better here, overall.

We believe we can improve ISGD1/2

if we reduce Type-I error rate of the

diagnostic.

Type-I errors lead to very small step

sizes early in the procedure, which

slows us down.

Halving the learning may also be too

aggressive.
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ISGD1/2 on logistic regression model
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Mixed picture again. ISGD1/2 still

comparable to SVRG.

In high SNR-few dimensions,

ISGD1/2 achieves consistently better

performance than SVRG.

Larger burnin period or discounting

the step size less aggressively can also

help here.

We plan on addressing such tuning

issues in future work, both

theoretically and empirically.
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Concluding remarks

Convergence diagnostics are useful for stopping SGD when necessary, and

building improved variants.

Type-I and Type-II error properties of Pflug diagnostic still unknown (and

challenging to analyze!).

Future work can focus also on analysis conditional on diagnostic being

activated (Table results in this talk).

Also focus more on ISGD1/2 that worked very well in experiments.

Convergence rate analysis? Tuning?

Parallelization is unexplored so far. One idea is to run parallel ISGD1/2

chains and aggregate iterates. At stationarity we expect iterates from

different chains to be uncorrelated with each other.
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Backup slides

Intuition: implicit update as an infinite series of standard updates:

θ(0)n = θn−1 +
1

n
(Yn − eθn−1).

θ(1)n = θn−1 +
1

n
(Yn − eθ

(0)
n ).

θ(2)n = θn−1 +
1

n
(Yn − eθ

(1)
n ).

· · ·

θ(∞)
n = θn−1 +

1

n
(Yn − eθ

(∞)
n )

cf. self-consistency . principle in statistics (Efron, 1967); (Tarpey & Flury, 1996).

Back to main .
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Efficient computation of implicit updates

Suppose that ∇l(θ) = s(y, x>θ)x, and ignore step size γn. Then,

θimn =θimn−1 + s(yn, x
>
n θ

im
n )xn (2)

=θimn−1 + ξs(yn, x
>
n θ

im
n−1)xn (3)

,θimn−1 + anxn. (4)

Equate the two scales:

an = s(yn, x
>
n θ

im
n ) [by setting (1) = (3)]

= s(yn, x
ᵀ
nθ

im
n−1 + ||xn||2an). [by substituting θimn with (3)]

Typically, LHS ↑ an and RHS ↓ an, both convex. Fixed-point equation is

u = s(y, a+ cu)

where c > 0. It follows that u ∈ [min(0, s(y, a)),max(0, s(y, a))].

Back to main .
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Self-consistency principle

Example. Estimate CDF F (t) with data Y1, Y2, . . . , Yn; Y
obs= uncensored.

A self-consistent estimator of F (t) is

F ∗(t) =
1

n

n∑
i=1

E
(
I{Yi ≤ t}|Y obs, F ∗

)
.

Back to main . .
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Stochastic approximation

In an experiment, suppose θ is input, H(θ) random output.

Suppose we wish to find θ? such that

E (H(θ?)) = 0.

Robbins-Monro (1951) stochastic approximation procedure:

θn = θn−1 + γnH(θn−1).

Theorem (Robbins and Monro, 1951): E
(
|θn − θ?|2

)
→ 0 if

�
∑

γi =∞;
∑

i γ
2
i <∞;

� H is concave in expectation and Lipschitz;
� E

(
||H(θ?)||2

)
<∞.

SGD as special case: H(θ) ≡ ∇ log f(Y ;X, θ) and θn → θ? because

E (∇ log f(Y ;X, θ?)) = 0.

Go back . .
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Implicit stochastic approximation

Classical stochastic approximation of Robbins & Monro (1951)

θn = θn−1 + γnH(θn−1)

Implicit stochastic approximation (Toulis & Airoldi, 2015b)

θn = θn−1 + γnH(θ∗n−1)

s.t. E (θn|θn−1) = θ∗n−1

Non-asymptotic/asymptotic analysis (Toulis & Airoldi, 2015b)

Implementations need to estimate θ∗n−1
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Optimal efficiency: second-order SGD

Theorem (Toulis & Airoldi, 2015a)

Consider the second-order implicit SGD procedure

θimn = θimn−1 +
1

n
Cn∇ log f(Yn;Xn, θ

im
n ),

where Cn → C � 0, where C is symmetric and commutes with I(θ?). Then

nVar(θimn )→ (2CI(θ?)− I)−1CI(θ?)C , Σθ?,C .

Optimal efficiency only if C = I(θ?)−1 .

Adaptive methods concurrently estimate I(θ?)−1;

e.g., Cn = I(θn−1)
−1, Sakrison’s (1965) explicit procedure.

Back to main . . Compare with AdaGrad . . See also implicit method with averaging . .
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A note on AdaGrad

A popular adaptive procedure is AdaGrad (Duchi et.al., 2011)

θadan = θadan−1 + γ1
1√
n
C1/2
n ∇ log f(Yn;Xn, θ

ada
n−1),

where Cn → diag(I(θ?)−1).

(Toulis & Airoldi, 2015a)

√
nVar(θadan )→ γ1

2
diag(I(θ?))−1/2. (5)

AdaGrad is inefficient but (1) holds regardless of γ1.

In contrast, SGD procedures require γ1 > 1/(2µ) for O(1/n) efficiency.
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AdaGrad trade-off: simulation

θ? = (2.23, 0.5, 0.1, 0.02, 0.01)ᵀ; λj ∈ [1, 10]
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Back to main . .
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Implicit stochastic approximation: implementations

θn = θn−1 + γnH(θ∗n−1)

s.t. E (θn|θn−1) = θ∗n−1

1 Run separate RM procedure at each nth iteration, k = 1, 2, . . .

xk = xk−1 + ak [θn−1 + γnH(xk−1)− xk−1]

� xk → θ∗n−1 (few iterations of xk can be enough)
� Only choice if can only sample through H (classical RM)
� Related to “multiple timescales” (Borkar, 2009)

2 Use θn as an estimate of θ
∗
n−1 ! Results in familiar procedure

θn = θn−1 + γnH(θn)

� Possible if H is known in analytic form (as in implicit SGD)
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Asymptotic optimal efficiency: averaging

Theorem (Toulis et.al., 2016)

Consider the averaged procedure, where γn ∝ n−γ , γ ∈ (0, 1), µ > 0,

θimn = θimn−1 + γn∇ log f(Yn;Xn, θ
im
n )

θ̄n =
1

n

n∑
i=1

θimi .

Then, θ̄n has asymptotically optimal efficiency, i.e.,

nVar(θ̄n)→ I(θ?)−1.

µ > 0 critical for theorem; typically, γn ∝ 1/
√
n.

Classical averaging results: (Ruppert, 1988); (Bather, 1989); (Polyak &

Juditsky, 1992)

Back to Second-order efficiency result . .
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Bayesian interpretation of implicit methods

Implicit SGD can be written as

θimn = argmax
θ

{
log f(Yn;Xn, θ)−

1

2γn
||θ − θimn−1||2

}
.

Thus, θimn is the posterior mode of the Bayesian model,

θ|θimn−1 ∼ N (θimn−1, γnI)
Yn|Xn, θ ∼ f

� Implicit SGD: interpretation of γn as information parameter.
� Explicit SGD: interpretation of γn as “step-size”.

First implicit method by Nagumo & Noda (1967); (Slock, 1993)

Go back . .
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Connection to proximal methods

In optimization problem, argminθ g(θ), for deterministic g we can do

θn = argmin
θ

{
g(θ) +

1

2γn
||θ − θn−1||2

}
.

RHS is a proximal operator, say proxγng(θn−1).

Stochastic proximal procedures (Duchi et.al., 2009); (Rosasco et.al., 2014):

θn = proxγnR (θn−1 + γn∇ log f(Yn;Xn, θn−1))

R is a deterministic regularizer; in implicit SGD it is random.

Such methods make one explicit step and then one deterministic proximal

step (implicit update). May be unstable.

Back back . .
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Incremental proximal gradient

Consider the problem

θ̂ = argmin
θ

N∑
i=1

fi(θ).

where N=#datapoints, i= datapoint index, fi=loss at i datapoint.

Bertsekas (2011) analyzed the procedure

θn = argmin
θ

{
fin(θ) +

1

2γn
||θ − θn−1||2

}
,

where in ∈ {1, 2, . . . , N}.
Like implicit SGD but in a non-streaming setting (fixed dataset).

Analysis compares in cycling through data with random in.

Back to related work .
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Optimal rates: a surprising pivotal quantity

One principled way to set the optimal rate:

γ∗1 = argmin
γ1

tr(Σθ?,γ1)⇔ γ∗1 = argmin
γ1

p∑
j=1

γ21λj

2γ1λj − 1
.

If γ1 >> 1/(2µ),

tr(Σθ?,γ1) ≈ p
γ1
2
. In fact, Σθ?,γ1 ≈

γ1
2
I (parameter-free!)

Fairly general way to construct pivotal quantity for θ?.

But we pay price in efficiency.

Back to optimal rates . .
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The unusual technical challenge of implicit SGD

Standard asymptotic analysis obtains recursion for E
(
||θexn − θ?||2

)
.

A crucial property is the concavity of

E
(
∇ log f(Yn;Xn, θ

ex
n−1)|θexn−1

)
,

which requires

(Yn, Xn) ⊥⊥ θexn−1.

However, in the implicit procedure

θimn = θimn−1 + γn∇ log f(Yn;Xn,θ
im
n )

we cannot use standard analysis because

(Yn, Xn) 6⊥⊥ θimn .
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Unusual technical challenge: our approach

In many statistical models

f(Y ;X, θ) ≡ f(Y ;X,Xᵀθ).

Then, ∇ log f(Y ;X, θ) collinear with X (free of θ); thus,

θimn =θimn−1 + γn∇ log f(Yn;Xn, θ
im
n )

=θimn−1 + γnξn∇ log f(Yn;Xn, θ
im
n−1).

1 ξn is easy to calculate⇒ fast implementation!

2 a.s. bound for ξn⇒ avoids conditioning problem since (Yn, Xn) ⊥⊥ θimn−1.

Proceed with analysis . . Back to main . .
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Almost-sure bound for ξn

Start with

θimn = θimn−1 + γnξn∇ log f(Yn;Xn, θ
im
n−1).

Let Î(θ) = −∇2 log f(Y ;X, θ) and suppose tr(Î(θ)) ≥ s > 0.

Then, Taylor expansion of gradient around θimn−1 yields

ξn ≥ (1 + γns)
−1 a.s.

Now, (Xn, Yn) ⊥⊥ θimn−1 yields recursion for MSE,

E
(
||θimn − θ?||2

)
≤ 1

1 + γns
E
(
||θimn−1 − θ?||2

)
+O(γ2n).

Back to main . . Proceed to solving the recursion . .
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ξn ≥ (1 + γns)
−1 a.s.

Now, (Xn, Yn) ⊥⊥ θimn−1 yields recursion for MSE,

E
(
||θimn − θ?||2

)
≤ 1

1 + γns
E
(
||θimn−1 − θ?||2

)
+O(γ2n).

Back to main . . Proceed to solving the recursion . .
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The wonderful idea of majorization-minorization

Suppose we wish to solve bn ≤ F (bn−1), F non-decreasing.

(majorize) Instead, we solve cαn ≥ F (cαn−1). If b0 ≤ cα0 then

b1 ≤ F (b0) ≤ F (cα0 ) ≤ cα1 ⇒ bn ≤ cαn. (by induction)

(minorize) Minimize c∗n wrt α to min. upper bound, bn ≤ c∗n.
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The wonderful idea of majorization-minorization

A simple example

Suppose we wish to solve bn ≤ bn−1 + n, b0 = 0. Clearly, the solution is

bn ≤ 1 + 2 + . . .+ n ≤ n(n+ 1)/2.

But suppose we don’t know the correct form but suspect it is α0n
2 + α1n.

Then

define cαn = α0n
2 + α1n and solve:

cαn ≥ cαn−1 + n

α0n
2 + α1n ≥ α0(n− 1)2 + α1(n− 1) + n

(2α0 − 1)n+ α1 ≥ α0

Thus, α0 ≥ .5 and α1 ≥ α0. Therefore,

bn ≤ c∗n = argmin
α

cαn = .5n2 + .5n = n(n+ 1)/2

Back to main . .
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Intractable likelihoods: Monte-Carlo SGD

In many cases the likelihood is intractable, thus SGD cannot be used.

Suppose finite data, and take Sobs to be the sufficient statistic.

Define T (θ) = E (S|θ),e.g., through Monte-Carlo.

Then calculate the update,

θn = θn−1 + γn(S
obs − T (θn−1)).

For instance, Sobs observed network statistics (e.g., #triangles), T=
simulated average statistics.

By SA theory θn converges to point θ∞ such that

T (θ∞) = Sobs.

Back to main . .
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