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Transient and stationary phase

@ lIterative procedures in stochastic optimization are typically comprised of a
transient phase and a stationary phase.

@ In the transient phase the procedure converges towards a region of interest.

@ During the stationary phase the procedure oscillates in that region,
commonly around a single point.

@ Understanding when the phase transition happens is crucial for
implementation and for improving empirical performance.

@ Our focus here will be stochastic gradient descent (SGD) procedures, but
our results may be more general.
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Stochastic gradient descent (SGD)

@ Statistical estimation gave a new form of optimization problems:
N
O, = argngnZ(G) = argmin z; 1;(9),
1=

where £ is loss function; [; is loss for ith datapoint only.

Panos Toulis, U Chicago Convergence diagnostics for SGD



Stochastic gradient descent (SGD)

@ Statistical estimation gave a new form of optimization problems:
N
O, = argngnZ(G) = argmin z; 1;(9),
1=

where £ is loss function; [; is loss for ith datapoint only.

@ Classical optimization methods, such as gradient descent,
On = Op_1 — 'ane(en—l)y

fail when gradient computation is expensive (e.g., N large).
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Stochastic gradient descent (SGD)

@ Statistical estimation gave a new form of optimization problems:

N
0, = argmin () = argngn;li(e),

where £ is loss function; [; is loss for ith datapoint only.

@ Classical optimization methods, such as gradient descent,
On = Op_1 — 'ane(en—l)y

fail when gradient computation is expensive (e.g., N large).

@ SGD has emerged as one of the most versatile optimization methods:
971 = 9n71 - ’VnVIJ(enfl)a
where J ~ Unif[1,2,..., N].
° , 0, — 0o such that: E(VI;(0s)) =0 = 0o = 0,.
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SGD with constant step size

@ While decreasing step size converges (in theory) it produces several problems: (1)
sensitivity to misspecification; (2) slow rate of convergence — O(1/N).

@ SGD with constant step size behaves differently:
Qn = 9n_1 - nylJ(Hn_l).

O “Convergence” is much faster...

O ..but not real convergence! Actually converges to region of radius O(,/7)
that contains 6,, and then oscillates in this region.

@ We will try to identify when SGD reaches the convergence region:
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SGD with constant step size

@ While decreasing step size converges (in theory) it produces several problems: (1)
sensitivity to misspecification; (2) slow rate of convergence — O(1/N).

@ SGD with constant step size behaves differently:
Qn = 9n_1 - nylJ(Hn_l).

O “Convergence” is much faster...

O ..but not real convergence! Actually converges to region of radius O(,/7)
that contains 6,, and then oscillates in this region.

@ We will try to identify when SGD reaches the convergence region:

0 Pointless to run the procedure beyond that point.

O Can improve the procedure by detecting convergence and then updating it
(e.g., decrease the step size).
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[llustration: SGD with constant step size
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An intuition for such behavior is in the following meta-theorem:

Theorem ( Zhang, 2004); (Moulines and Bach, 2011); (Needell et. al., 2014)

There are positive constants A, B such that, for every n, it holds that

E (|16 — 6./1%) < E (/|60 — 6./I%) e + By.

e For example, A, ~ yu/4 — 2 L2, where p, L are strong convexity and
Lipschitz constant of expected loss, resp; B = o2/, where o2 is noise
level.
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An intuition for such behavior is in the following meta-theorem:

Theorem ( Zhang, 2004); (Moulines and Bach, 2011); (Needell et. al., 2014)

There are positive constants A, B such that, for every n, it holds that

E (|16 — 6./1%) < E (/|60 — 6./I%) e + By.

e For example, A, ~ yu/4 — 2 L2, where p, L are strong convexity and
Lipschitz constant of expected loss, resp; B = o2/, where o2 is noise
level.

o Transient phase: SGD forgets initial conditions exponentially fast.
o Stationary phase: SGD oscillates around 6, at a region of radius O(,/7).

e Trade-off: large v speeds up convergence but increases oscillation radius;
small v decreases the radius but convergence is slower.
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An intuition for such behavior is in the following meta-theorem:

Theorem ( Zhang, 2004); (Moulines and Bach, 2011); (Needell et. al., 2014)

There are positive constants A, B such that, for every n, it holds that

E (|16 — 6./1%) < E (/|60 — 6./I%) e + By.

e For example, A, ~ yu/4 — 2 L2, where p, L are strong convexity and
Lipschitz constant of expected loss, resp; B = o2/, where o2 is noise
level.

o Transient phase: SGD forgets initial conditions exponentially fast.
o Stationary phase: SGD oscillates around 6, at a region of radius O(,/7).

e Trade-off: large v speeds up convergence but increases oscillation radius;
small v decreases the radius but convergence is slower.

@ Despite valuable theoretical insights such results offer limited guidance in
practice for detecting convergence (bound may not be tight; parameters
, L, 0 hard to estimate).
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Related work

@ The idea of transient/stationary phases (also known as search/convergence
phases) has been expressed before (e.g., Murata, 1998).

e In optimization, a typical approach is to stop when ||6,, — 6,,_1]| is small
according to some threshold, or when updates of the loss function have
reached machine precision (Ermoliev and Wets, 1998; Bottou et. al.,
2016). Ignores noise from stochastic gradients.

e Large literature on convergence diagnostics of Monte Carlo Markov
Chains (Cowles, 1996). Different setting but shares common
characteristics with our problem here.

@ Pflug has made seminal contributions in the theory of stopping times in
stochastic approximations (1998, 1990). Our work here is heavily
influenced by Pflug’s work.
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Pflug’s convergence diagnostic (high-level idea)

.l.\./
]

o (Left) In transient phase gradient is auto-correlated: successive gradients
generally point to same direction.

@ (Right) In convergence phase successive gradients are more likely to point
to opposite direction.

@ Running average of inner product of successive gradients will thus be our
test statistic.
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Convergence diagnostic algorithm

Let V1,, = stoch. gradient at nth iteration (depends on sampled y,, and 6,,_1).

1: Sp«0

2: 01« 6y — Vi

3: foralln € {2,3,---} do
4 Op <+ 01 — Vi,

5: Sp < Sp_ 1+ VIV, 1 #running sum of inner product
6 if n > burnin and S,, < 0 then

7: return n  #declare convergence

8 end if

9: end for

@ Variable burnin = O(1/7).

@ Several variations of the algorithm are possible; e.g., discount old
iterations in running sum.
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Quadratic loss model: first intuition

Let o =features, y = outcomes; we focus on quadratic loss where

Uy, 2;0) = (1/2)(y — 2 "0)? and VL(y, z;0) = —(y — z ' O)z.

@ Suppose that 6y = 0,. Let y,, — xILH* = &, Where ¢,, are zero-mean r.v.
given x,,. Then,

01 = 0, +v(y1 — 21 0,)31 = 0, + ve171,
from which it follows that

Sy — 51 = (y2 — x2T€1)(y1 — xlTQO)xQTxl = (g2 — 'ysla?;:cl)elxérazl.

E(Sy— S1) = —E (2)E ((x;xl)Q) <0. (1)
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Quadratic loss model: first intuition

Let o =features, y = outcomes; we focus on quadratic loss where

Uy, 2;0) = (1/2)(y — 2 "0)? and VL(y, z;0) = —(y — z ' O)z.

@ Suppose that 6y = 0,. Let y,, — x:,ﬂ* = &, Where ¢,, are zero-mean r.v.
given x,,. Then,

01 = 0, +v(y1 — 21 0,)31 = 0, + ve171,
from which it follows that

Sy — 51 = (y2 — x2T€1)(y1 — xlTQO)xQTxl = (g2 — 'ysla?;xl)ela?;wl.

E(Sy— S1) = —E (2)E ((x;xl)Q) <0. (1)

o Thus, the diagnostic is decreased in expectation, and by LLN (and a
property of upper-boundedness) it will eventually become negative.
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Theorem

For quadratic loss, let x1 and x4 be two iid vectors from the distribution of ,
and define: 0> = E ((y — 270,)?); 2 = E ((z{ 22)?); C = E (2125 (2] z2));
D=E (xlxir(:vier)Q) and suppose that all are finite. Then, for v > 0,
An(ﬁ) = ]E (Sn+2 - S’n+1|9n = 0)
= (0 —6,)" (C —~D)( — 6,) — v
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Theorem

For quadratic loss, let x1 and x4 be two iid vectors from the distribution of ,
and define: 0> = E ((y — 270,)?); 2 = E ((z{ 22)?); C = E (2125 (2] z2));
D=E (xlxir(:vier)Q) and suppose that all are finite. Then, for v > 0,
An(ﬁ) = ]E (Sn+2 - S’n+1]9n = 0)
= (0 —6,)" (C —~D)( — 6,) — v

@ Boundary surface of expected sign increase of test statistic is an ellipse.

@ When 6 = 6, we have expected decrease (good!).

o Interesting dynamics:
O Bias term contributes positive values to test statistic. Reasonable because
bias pushes SGD iterates to 6.
O Error term contributes negative values to statistic. Reasonable because error
pushes SGD iterates away from 6.
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Assume y ~ N (z70,,0%); x ~ N (0, I2); 6, = (0.47,0.22); 02 = 3.

Estimation of Pflug(green) and stationary(blue) regions
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Figure: Green center: Pflug diagnostic decreased in expectation. Blue polygon:
oscillation region of SGD iterates (empirically calculated). Color legend: values of
expected increase (or decrease) of the diagnostic.
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Estimation of Pflug(green) and stationary(blue) regions
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Il conditioning: Var(x1) = 1, Var(z) € [0.1,0.3,0.5,0.8].

pflug(green), stationary(blue), var(x -

pflug(green), stationary(blve), var(x_2)=0.3, normal, =1

0005 0005
0004 o000s
0003 0003
0002 0002
o001 o001
0000 o000
014 T T T T T -o001 o1 T T T T T -o001
02 03 04 05 05 o7 0s 02 03 04 0s 05 07 03

pfluglgreen), stationary(blue), var(x_2)=0.8, normal, =1 pllug(green), staionary(blve), var(x_2)=0.5, norma, =1




Simulated study

e p = 20 dimensions; 0, ; = 10e~%7; o = 3; N = 5000 data points;
o Let E,, = ||0,, — 04||? and T be when the test diagnostic is activated.
o We store (7,7, Eo, Er /2, Far).
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Simulated study

e p = 20 dimensions; 0, ; = 10e~%7; o = 3; N = 5000 data points;
o Let E,, = ||0,, — 04||? and T be when the test diagnostic is activated.
o We store (7,7, Eo, Er /2, Far).

ET/2 = ﬂT/QEo +e FEor=pPoEy+e

Y /87— 2 527’
0.02 0.17 ** 0.01.
0.05 0.20 *** —0.008
0.1 0.09 ** —0.0007
0.2 0.06 ** 0.005
0.5 0.09 *** —0.008
1.0 0.06 * 0.02 *
2.0 0.06 ** 0.009
5.0 0.07 ** —0.012
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Simulated study

e p = 20 dimensions; 0, ; = 10e~%7; o = 3; N = 5000 data points;
o Let E,, = ||0,, — 04||? and T be when the test diagnostic is activated.
o We store (7,7, Eo, Er /2, Far).

E; /o= BrjoE0+¢€ Ear = ParEp+e

Y ﬁT 2 527’
0.02 0.17 ** 0.01.
0.05 0.20 *** —0.008
0.1 0.09 ** —0.0007
0.2 0.06 ** 0.005
0.5 0.09 *** —0.008
1.0 0.06 * 0.02 *
2.0 0.06 ** 0.009
5.0 0.07 ** —0.012

o Table shows that diagnostic behaves as intended: conditional on activated
diagnostic the distance to 6, is uncorrelated with initial distance.
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Sensitivity and Implicit update

o Pflug diagnostic and main SGD procedure are sensitive to misspecification
of step size .

@ One way to alleviate such sensitivities is to use the SGD procedure with an
implicit update (ISGD):

On = en—l - ’YVZJ(On)
@ For quadratic loss the implicit update is equivalent to:

1

Oy = ———
"1l

(en—l + ’}/ynlﬂn) .
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Sensitivity and Implicit update

o Pflug diagnostic and main SGD procedure are sensitive to misspecification
of step size .

@ One way to alleviate such sensitivities is to use the SGD procedure with an
implicit update (ISGD):

On = en—l - ’YVZJ(On)
@ For quadratic loss the implicit update is equivalent to:

1

Oy = ———
"1l

(en—l + ’}/ynlﬂn) .

@ Note: Implicit update is more easily applicable than usually assumed in
practice (Toulis et.al., 2014) — straightforward, and essentially costless
computationally, for generalized linear models, M-estimation, hazards.

e Implicit SGD procedures are statistically equivalent to explicit ones, but
remarkably more robust numerically (Toulis and Airoldi, 2017).

(more details on ; relation to , Or )
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Implicit update

Theorem
Let >‘7 =E (1/(1 + 7||$’|2)) S (07 1] and Agn(e) =E (Sn+2 - Sn+1|'9n = 9)
Then, it holds that

A™(9) = a, Ay (8) + b, [(9 —9,)TDO—0,) + 0%2] :

where A,,(0) is the expected increase for the explicit update, a, = )\3, and
by = 'y)\gl(l -\
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Implicit update

Theorem
Let >‘7 =E (1/(1 + 7||$’|2)) S (07 1] and Agn(e) =E (Sn+2 - Sn+1|‘9n = 9)
Then, it holds that

A™(9) = a, Ay (8) + b, [(9 —9,)TDO—0,) + 0%2] :

where A,,(0) is the expected increase for the explicit update, a, = )\3, and
by = 'y)\gl(l -\

o Consider, for example, v = oo so that A, = 0. In classical SGD the
diagnostic increases without bound and convergence fails.

e With implicit update we have A™(6) ~ 0, and convergence may happen.
o In contrast, when v ~ 0 then A, ~ 1 and so A™(¢) ~ A,,(f), and implicit
diagnostic behaves as the explicit one.
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Summary regarding Pflug diagnostic

@ Diagnostic activation region can be obtained in closed form for quadratic
loss (and, more generally, for generalized linear models — not shown here).

@ Activation region empirically coincides with actual stationary region.

e Distance ||0,, — 0| empirically uncorrelated with initial distance
conditional on diagnostic being activated.

e Implicit update offers a more reliable version of the diagnostic.

@ Performance is hurt by ill conditioning and poor initialization (ongoing
work).
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Application: ISGD'/?

@ We discuss one application of the diagnostic to define a version of SGD
that converges to 0, in linear time.

@ The idea is simply to reduce the step size (e.g., halve, v + 7/2) each time
convergence is detected.

@ We call this procedure ISGD'/2. We do not have a theoretical analysis of
its performance, only of its parts (ISGD with constant step size and Pflug
diagnostic).
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Ilustration of ISGD/2

SGD with reduction of learning rate by 80%
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Experimental setup for ISGD'/2

e We compare ISGD'/2 against SVRG and ISGD on simulated data.

@ We consider high and low dimension settings as p = 150 and p = 10,
respectively.

@ We consider high and low signal to noise ratio (SNR) settings as SNR = 5
and SNR = 2, where SNR = trace(Var(x))/pVar(y|x).

o We fix 6, such that 0, ; = 10e~%7%7; we set N = 5000.
e We sample z;; ~ N,(0,I), wherei =1,2,... N.

e We sample y; ~ N (xiTQ*, 02) for normal model, and
y; ~ Binom(exp(x; 0,)/(1 + exp(z; 6)) for logistic model.
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ISGD'/2 on normal model

low SNR, low dimen low SNR, high dimen

@ ISGD'/? attains comparable
performance to SVRG. Still, SVRG is
better here, overall.

— classical - — classical

log mse
log mse
|

@ We believe we can improve ISGD'/?
L S A A if we reduce Type-I error rate of the
roass pass diagnostic.

high SNR, low dimen high SNR, high dimen P

Type-I errors lead to very small step
= G “ = G sizes early in the procedure, which
— SGD 12 — SGD1/2

slows us down.

1
I

log mse
3 -2 -1 0
log mse
I

@ Halving the learning may also be too
aggressive.

-4
I
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ISGD'/? on logistic regression model

low SNR, low dimen low SNR, high dimen

@ Mixed picture again. ISGDY/2 still
comparable to SVRG.

24 — classical — classical

log mse
log mse
1
I

@ In high SNR-few dimensions,
ISGD'/2 achieves consistently better

[ T performance than SVRG.
rpass pass ) ) ) )
@ Larger burnin period or discounting
1o SN fow dimen o SN, g cimen the step size less aggressively can also
1 = G 2 = G help here.
— — SGD 12 — SGD 1/2

00 05 10 15

log mse
log mse

@ We plan on addressing such tuning
issues in future work, both
— S e theoretically and empirically.

-1.0
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Concluding remarks

e Convergence diagnostics are useful for stopping SGD when necessary, and
building improved variants.

@ Type-I and Type-II error properties of Pflug diagnostic still unknown (and
challenging to analyze!).

e Future work can focus also on analysis conditional on diagnostic being
activated (Table results in this talk).

o Also focus more on ISGD'/? that worked very well in experiments.
Convergence rate analysis? Tuning?

@ Parallelization is unexplored so far. One idea is to run parallel ISGD'/?
chains and aggregate iterates. At stationarity we expect iterates from
different chains to be uncorrelated with each other.
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Backup slides

@ Intuition: implicit update as an infinite series of standard updates:
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Backup slides

@ Intuition: implicit update as an infinite series of standard updates:

07(?) = Gn—l =+ %(Yn — 69”_1).
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Backup slides

@ Intuition: implicit update as an infinite series of standard updates:
0 1 b1
Gn :9n_1+ﬁ(Yn—e” )

1 (0)

00 = 0,1 + =(Y, ).

n
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Backup slides

@ Intuition: implicit update as an infinite series of standard updates:
0 1 b1
Gn :9n_1+ﬁ(Yn—e” )

1 o)

00 = 6,1 + = (Y, — el ).
n

1 o

02 = 60,1+ = (Y, — ).
n
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Backup slides

@ Intuition: implicit update as an infinite series of standard updates:
0 1 b1
Gn :9n_1+ﬁ(Yn—e” )

1 (0)

) — ~(, .
Qn On—1+ n( n )

62 — 6y + 2 (v, — ).
n

1 (00)
ngc) — 017,71 + *(Yn _ 69” )
n

o cf. principle in statistics (Efron, 1967); (Tarpey & Flury, 1996).
@ Backto
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Efficient computation of implicit updates

Suppose that VI(0) = s(y, z ' #)z, and ignore step size 7,,. Then,
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Efficient computation of implicit updates

Suppose that VI(0) = s(y, z ' #)z, and ignore step size 7,,. Then,

O =01 + 5(yn, Wm) )
:Glm 1 + gs(yfh Ly 7; 1)$n (3)
éegrl,l + apTn. (4)
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Efficient computation of implicit updates

Suppose that VI(0) = s(y, z ' #)z, and ignore step size 7,,. Then,

oM =0 | + 5(yn, T, OO )2, )
=0 | + £5(Yn, T, O™ )y 3)
20 | + 4Ty 4)

Equate the two scales:
an = $(Yn, z,) OI™) [by setting (1) = (3)]
= 5(Yn, TO0™ | + ||z ||%a,).  [by substituting 6™ with (3)]

Typically, LHS 1 a,, and RHS | a,,, both convex. Fixed-point equation is
u=s(y,a+ cu)
where ¢ > 0. It follows that u € [min(0, s(y, a)), max(0, s(y,a))].

Back to
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Self-consistency principle

o Example. Estimate CDF F'(t) with data Y1,Y5,...,Y,; Y °%= uncensored.
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Self-consistency principle

o Example. Estimate CDF F'(t) with data Y1,Y5,...,Y,; Y °%= uncensored.

@ A self-consistent estimator of F'(t) is
1 n
Fi(t)=~> E (]I{Yi < t}|Y°bS,F*) .
n
i=1

Back to
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Stochastic approximation

e In an experiment, suppose 6 is input, H (6) random output.

@ Suppose we wish to find 6, such that

E (H(6,)) = 0.
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Stochastic approximation

e In an experiment, suppose 6 is input, H (6) random output.

@ Suppose we wish to find 6, such that

E (H(6,)) = 0.

@ Robbins-Monro (1951) stochastic approximation procedure:
O = 0p_1+ 'YnH(anl)

e Theorem (Robbins and Monro, 1951): E (|6,, — 6,|*) — 0 if

0 3y = 005 30,77 < 003
O H is concave in expectation and Lipschitz;
7 E (|[H(6,)]2) < <.

@ SGD as special case: H(0) = Vlog f(Y; X,0) and 6,, — 6, because

E (Vlog f(Y; X,6,)) = 0.
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Implicit stochastic approximation

@ Classical stochastic approximation of Robbins & Monro (1951)
Op = 0p_1+ 'YnH(Qn—l)
e Implicit stochastic approximation (Toulis & Airoldi, 2015b)

On = 01+ H O _,)
st. E(0p|0h-1) =0, 4

@ Non-asymptotic/asymptotic analysis (Toulis & Airoldi, 2015b)

e Implementations need to estimate 0,
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Optimal efficiency: second-order SGD

Theorem (Toulis & Airoldi, 2015a)

Consider the second-order implicit SGD procedure

R i
O = 05y + —CnV log f(Yn; Xn, 077),

where Cy, — C = 0, where C' is symmetric and commutes with Z(0.). Then

nVar(0™) — (2CZ(6,) — 1) "'CZ(6,)C £ Ty, -
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Optimal efficiency: second-order SGD

Theorem (Toulis & Airoldi, 2015a)

Consider the second-order implicit SGD procedure
‘ . 1 .
O =01 + —CnVlog f(Yn; Xn, 01),
n

where Cy, — C = 0, where C' is symmetric and commutes with Z(0.). Then

nVar(0™) — (2CZ(6,) — 1) "'CZ(6,)C £ Ty, -

e Optimal efficiency only if C = Z(6,)" .
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Optimal efficiency: second-order SGD

Theorem (Toulis & Airoldi, 2015a)

Consider the second-order implicit SGD procedure

R i
O = 05y + —CnV log f(Yn; Xn, 077),

where Cy, — C = 0, where C' is symmetric and commutes with Z(0.). Then

nVar(0™) — (2CZ(6,) — 1) "'CZ(6,)C £ Ty, -

e Optimal efficiency only if C = Z(6,)" .
1

@ Adaptive methods concurrently estimate Z(6,)™;
e.g., Cp, = Z(0,,_1)~ 1, Sakrison’s (1965) explicit procedure.

Back to . Compare with . See also implicit method with
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A note on AdaGrad

@ A popular adaptive procedure is AdaGrad (Duchi et.al., 2011)

1
O = 021+ = Ol PV log f (Vs X, 072),

where C,, — diag(Z(6,)71).
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A note on AdaGrad

@ A popular adaptive procedure is AdaGrad (Duchi et.al., 2011)

O = 032 + 70 V2V log f (Yo X, 03%,),

where C,, — diag(Z(6,)1).

(Toulis & Airoldi, 2015a)

VnVar(624) — %diag(z(a*))—l/? (5)

@ AdaGrad is inefficient but (1) holds regardless of ;.
e In contrast, SGD procedures require y; > 1/(2u) for O(1/n) efficiency.
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AdaQGrad trade-off: simulation

e 0, = (2.23,0.5,0.1,0.02,0.01)T; A, € [1, 10]

96- Fe
.8 AT
g ST method
.% '  ,~ adagrad
‘g :i _ __.-* = adagrad (theoretical)
@47 t i ot -=- implicit
; .
5 i O implicit (theoretical)
@ 3 L
[} " -
g R oy
= S
g |
2- 4
0 5 10 15

Learning rate y;

Back to
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Implicit stochastic approximation: implementations

On = On—1 + ¥ H(0:_))
st. E(0p|0h-1) =0, 4

@® Run separate RM procedure at each nth iteration, £k = 1,2,...

T = xp—1 + a [Op—1 + W H (Tp—1) — Tp—1]

Oz, — 07 _, (few iterations of x5, can be enough)
O Only choice if can only sample through H (classical RM)
0 Related to “multiple timescales” (Borkar, 2009)

® Use 0,, as an estimate of 6 _; ! Results in familiar procedure

971 - en—l + ’YnH(en)

O Possible if H is known in analytic form (as in implicit SGD)
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Asymptotic optimal efficiency: averaging

Theorem (Toulis et.al., 2016)
Consider the averaged procedure, where v, x n=7, v € (0,1), u > 0,

fim = 0im | 4 ~, V log f(Yn; X, 61)
_ 1 < .
On = — z;e;.m.
1=

Then, 0,, has asymptotically optimal efficiency, i.e.,

nVar(6,) — T(6,)~".

@ 1 > 0 critical for theorem; typically, v, o< 1/+/n.

o Classical averaging results: (Ruppert, 1988); (Bather, 1989); (Polyak &
Juditsky, 1992)

Back to
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Bayesian interpretation of implicit methods

e Implicit SGD can be written as
g = arg g {1og /(¥ X,.0) — 21110 — 02}

o Thus, 6™ is the posterior mode of the Bayesian model,

0103 ~ N (O3 1, 7l

O Implicit SGD: interpretation of ,, as information parameter.
O Explicit SGD: interpretation of ,, as “step-size”.

e First implicit method by Nagumo & Noda (1967); (Slock, 1993)
Go
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Connection to proximal methods

In optimization problem, arg ming g(6), for deterministic g we can do

) 1
6, = argngn{g<e> +ollo - en_lw} .

RHS is a proximal operator, say prox.,  (6n—1).

Stochastic proximal procedures (Duchi et.al., 2009); (Rosasco et.al., 2014):

On = prox,, g (On—1 + 1 Vlog f(Yn; Xn, 0—1))

R is a deterministic regularizer; in implicit SGD it is random.

Such methods make one explicit step and then one deterministic proximal
step (implicit update). May be unstable.

Back
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Incremental proximal gradient

o Consider the problem
R N
0= i i(0).
argmin Z; £:(0)

where N=#datapoints, i= datapoint index, f;=loss at 7 datapoint.
o Bertsekas (2011) analyzed the procedure

1
0n = argm@m{fzn(ﬁ) + EHO — 9n—1|‘2} )

where i, € {1,2,...,N}.
e Like implicit SGD but in a non-streaming setting (fixed dataset).

@ Analysis compares i,, cycling through data with random i,,.

Back to
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Optimal rates: a surprising pivotal quantity

@ One principled way to set the optimal rate:

p 2
= arg min tr(2 & ~F = arg min E — L
g £ 71 ( 9*’71) ! £ 71 st 2’)’1)\j —1 |

o Ify1 >>1/(2p),

tr(Xg, ;) & p%. In fact, Xy, , = %]I (parameter-free!) l

e Fairly general way to construct pivotal quantity for 6.

@ But we pay price in efficiency.

Back to
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The unusual technical challenge of implicit SGD

e Standard asymptotic analysis obtains recursion for E (|| — 6,|[?).
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The unusual technical challenge of implicit SGD

e Standard asymptotic analysis obtains recursion for E (|| — 6,|[?).

@ A crucial property is the concavity of
B (Vlog f (Yn; X, 055 1)1051) »

which requires
(Yo, X,) 1L 67F

n—1-
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The unusual technical challenge of implicit SGD

e Standard asymptotic analysis obtains recursion for E (|| — 6,|[?).

@ A crucial property is the concavity of
(Vlogf(Yn,Xn, o)l ZX—1),
which requires
(Yo, Xp) 1L 655 .
e However, in the implicit procedure
6"“‘ =0m | 4+ 4, Viog f(Yn; X,, 9;‘:‘)
we cannot use standard analysis because

(Yo, X)) L 6,
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Unusual technical challenge: our approach

@ In many statistical models

fY;X,0) = f(Y; X, XT0).
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Unusual technical challenge: our approach

@ In many statistical models

fY;X,0) = f(Y; X, XT0).

@ Then, Vlog f(Y; X, 0) collinear with X (free of 6); thus,

le _91m 1 + ’an log f(YTL7Xn’ 0,1,?1)
:Hlm 1+ ’ynan10g f(Y’m XTL7 rin 1)
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Unusual technical challenge: our approach

@ In many statistical models

fY;X,0) = f(Y; X, XT0).

@ Then, Vlog f(Y; X, 0) collinear with X (free of 6); thus,

le _elm 1 + ’an log f(YTL7Xn’ 0,1,?1)
:Hlm 1 =+ 7n£NV1Og f(Yn7 XTL7 ’in 1)

@ &, is easy to calculate = fast implementation!
im
n—1-

@® a.s. bound for &, = avoids conditioning problem since (Y;,, X,,) 1L

Proceed with . Back to
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Almost-sure bound for &,

@ Start with

H‘m = 91m 1 + ’Yngnv log f(Yn’ X”’ n— 1)
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Almost-sure bound for &,

@ Start with

H‘m = 91m 1 + ’Yngnv log f(Yn’ X”’ n— 1)

o Let Z(#) = —V2log f(V; X, 0) and suppose tr(Z(6)) > s > 0.

o Then, Taylor expansion of gradient around 6™ , yields

&n > (14 %s)_1 a.s.
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Almost-sure bound for &,

@ Start with

alm = Hlm 1 + ’Yngnv IOg f(Yna Xna n— 1)
o Let Z(#) = —V2log f(V; X, 0) and suppose tr(Z(6)) > s > 0.
o Then, Taylor expansion of gradient around 6™ , yields

&n > (14 %s)_1 a.s.

o Now, (X,,,Y,) 1L 6™ yields recursion for MSE,

n

E (10 - 6.11) < 15— (121~ 0I1) + 0022

Back to . Proceed to solving the
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The wonderful idea of majorization-minorization

e Suppose we wish to solve b, < F'(b,_1), F' non-decreasing.

e (majorize) Instead, we solve ¢ > F'(¢%_,). If by < cf then

by < F(bo) < F(c§) < ¢¢ = by < 2. (by induction) ]

@ (minorize) Minimize ¢}, wrt a to min. upper bound, b,, < c};.
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The wonderful idea of majorization-minorization

A simple example
Suppose we wish to solve b, < b,—1 + n, by = 0. Clearly, the solution is

bp <1+2+...4+n<n(n+1)/2.

But suppose we don’t know the correct form but suspect it is agn? + ain.
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The wonderful idea of majorization-minorization

A simple example
Suppose we wish to solve b, < b,—1 + n, by = 0. Clearly, the solution is

bp <1+2+...4+n<n(n+1)/2.

But suppose we don’t know the correct form but suspect it is agn? + a;n. Then
define ¢ = agn? + ayn and solve:

Cp = Cp 1t n
aogn® +ain>ag(n—12+a1(n—1)+n
(200 —1)n+ a1 > ag

Thus, ag > .5 and o > «g. Therefore,

by < ¢ = argminc® = .5n% 4+ .5n = n(n +1)/2
o

Back to
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Intractable likelihoods: Monte-Carlo SGD

@ In many cases the likelihood is intractable, thus SGD cannot be used.
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Intractable likelihoods: Monte-Carlo SGD

@ In many cases the likelihood is intractable, thus SGD cannot be used.
@ Suppose finite data, and take S°* to be the sufficient statistic.
@ Define 7'(0) = E (56),e.g., through Monte-Carlo.
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Intractable likelihoods: Monte-Carlo SGD

In many cases the likelihood is intractable, thus SGD cannot be used.
Suppose finite data, and take S°° to be the sufficient statistic.
Define T'(0) = E (5]6),e.g., through Monte-Carlo.

Then calculate the update,

On = On—1 4+ (S — T(0p_1)).

e For instance, S° observed network statistics (e.g., #triangles), T=
simulated average statistics.

e By SA theory 6,, converges to point 6, such that
T(0s) = S,

Back to
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