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Setup

This paper considers the problem of doing inference in a model

yi = f(xi, β) + εi,

where

yi ∈ R is the response; xi ∈ Rp are covariates.

εi ∈ R are the unobserved errors.

We insist on using only structural assumptions on the errors.

Specifically, we don’t assume independence of εi, or any limit on the distr of X.
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Structural assumptions

Errors may share a complex dependency. For example, they may be

exchangeable (e.g., when generated under identical conditions).

non exchangeable but sign-symmetric (e.g., heteroskedasticity).

clustered and independent across clusters but not within (e.g., school data).

doubly-clustered (e.g., trade data)

...

These can be encoded in a parsimonious way through a group of transformations G
and assuming:

ε
d
= gε | X, for all g ∈ G.

This will be our main inferential (structural) assumption.

Randomization inference (Fisher, 1935); (Lehman and Romano, 2005) works with such
assumptions in experimental settings.

We extend this to observational settings through “residual randomization” (RR).
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Main contributions

Residual Randomization (RR) directly compares to bootstrap as a general method for
inference. The main points of comparison:

1 RR generally requires mild conditions on the (ε,X)-distr (e.g., leverage structure).

Bootstrap relies on
√
n-asymptotic normality, which is usually much stronger.

2 RR uses one single procedure for each G. Unified way of inference.

Bootstrap requires a different variant for each setting. [the “bootstrap zoo”: wild,
residual, cluster, block, pigeonhole,...]

3 In most cases, the same RR procedure is valid also in high-dimensional settings
where p < n but p → ∞.

Bootstrap needs completely new theory and new variants for that.

4 In some (limited) settings, RR can even be finite-sample valid.

RR is a robust and principled way of inference. There is life after bootstrap!
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Outline

1 Residual randomization inference.

2 Main condition for validity.

3 Exchangeability in linear model.

4 Clustered error structures in linear model.
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Main Idea

Suppose we want to test a null hypothesis, H0, on β.

We assume the existence of a test statistic Tn for which there is a known function

tn : Rn → R satisfying:

Tn
H0= tn(ε).

Example: Suppose linear f and H0 : β1 = 0. Take Tn = β̂1. Then, under H0,

β̂1 = (0, 1, 0 . . .)′(X>X)−1X>ε.

Because of invariance, tn(gε) d
= Tn under the null. So, we can easily construct a

randomization test for H0.
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Classical randomization test

In particular, standard randomization theory (Lehman and Romano, 2005) suggests that
we can test H0 through

Reject H0 if (1/|G|)
∑
g∈G

1{tn(gε) ≥ Tn} ≤ α. (1)

Many excellent (and unique) properties of such tests:

Finite-sample exact. They work great for any finite n > 0. Robustness.

Assumption-free. No conditions on (ε,X)-distribution.

Easy to implement and communicate.

Of course, the downside here is that the standard test is infeasible because ε are
unobserved.

The idea is to approximate it through residuals.
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Main Residual Randomization Procedure

Suppose we have an estimator β̂ of β. [not necessarily consistent, or “well behaved”.]

Then, the feasible procedure is to use tn(gε̂) from residuals ε̂i = yi − f(xi; β̂) in the
standard procedure; i.e., we do

1 Calculate the residuals, ε̂ = y −Xβ̂.

2 Compute Tn .

3 Set TR = {tn(gr ε̂) : gr ∼ Unif(G), r = 1, . . . , R}. [no need to consider entire G]

4 Calculate p-value: p̂val = (1/R)
∑

t∈TR
1(t ≥ Tn).

At target level α ∈ (0, 1), the test decision is:

φn = 1(p̂val ≤ α).

Procedure is simple and general.

But we are losing finite-sample validity. How about robustness?
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Validity

i.e., “Under what conditions is residual randomization valid?”

Theorem

Let Λn = tn(G1ε)− tn(G2ε) and let ∆n = tn(Gε̂)− tn(Gε), where
G,G1, G2 ∼ Unif(G). Suppose that

P (Λn = 0) → 0, and
E(∆2

n)

E(Λ2
n)

→ 0.

Then, residual randomization is asymptotically valid under H0, that is,

lim sup
n→∞

E(φn|H0) ≤ α.

Λn is the “spacing” between the randomization values of the feasible test.

∆n is the approximation error of the infeasible test.

The theorem shows that residual randomization is valid asymptotically if the
variance of the spacings in the feasible test dominates the variance of the
approximation error.

Notably: consistency of β̂ or “
√
n-conditions” are not necessary!
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Intuition

A randomization test relies on the quantiles of the randomization distribution.

The quantiles of the infeasible test (and so the test decision) are very similar to the
infeasible test as long as ∆n � Λn.

They are actually identical when max∆n ≤ minΛn.

This shows why RR inherits (partially) the robustness of the infeasible test.
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Finite-sample rates

Theorem

Let
E(∆2

n)

E(Λ2
n)

= ζ2n → 0, and Λ̄n = |Λn|
Var(Λn)1/2

. Suppose also that FΛ̄n
(ε) = O(εγ). Then,

E(φn | H0) = α+AγO(ζ2γ/(2+γ)
n ).

Parameter γ controls how small the spacings are.

Smaller γ implies more “concentration” of Λn on zero (=small spacings in
feasible test). Larger γ implies larger spacings.

Under regularity conditions, ζ2n = O(1/n), and γ = 1 (e.g., normal Λ̄n). Then,
the rate to validity is O(n−1/3).

Best rate is O(n−2/3).[“price of robustness”]
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Linear model

These results translate into simple conditions when we move to the linear model:

y = Xβ + ε.

Consider testing a linear hypothesis H0 : a′β = a0.

In this setting, for residual randomization we can simply use

Tn = (a′β̂ − a0)

as the test statistic. Here, β̂ is the OLS estimate (could also be restricted OLS).

Thus, under the null, tn(u) = a′(X>X)−1X>u, and Tn = tn(ε) as required.

The test can be “inverted” to also construct RR-based CIs for each individual β.
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Linear model : exchangeability

In this setting, we assume that G represents permutations of n-length vectors.

In other words, for any permutation π,

(ε1, . . . , εn)
d
= (επ(1), . . . , επ(n))

Theorem

In the linear model, suppose that P (Λn = 0) → 0 and that the errors are
exchangeable. Then,

p/n = o(1)

is sufficient for asymptotic validity of residual randomization.

No additional conditions on X! Or the error distribution. OLS could even be
inconsistent.

Validity even when p → ∞, as long as p = o(n).

Theorem also shows that exchangeability is actually a strong inferential
assumption.
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Comparison with bootstrap

The “bootstrap principle” is that
√
n(β̂∗ − β̂) has same distribution as

√
n(β̂ − β).

So, “good asymptotic” behavior of β̂ is required, in general.

In this setting, residual bootstrap Freedman (1981) requires:

1 ε1, . . . , εn ∼ i.i.d., with mean 0 and finite variance σ2.

2 (1/n)X>X → V , where V is positive definite.

Much stronger conditions than residual randomization.

Also requires p < ∞.

14 / 29



Illustration

Assume xi ∼ t5 and εi = Weibull(0.6). We let p =
√
n.

Rejection rates of RR over 2,000 replications:

n p rejection rate %
25 5 10.6
50 7 7.2
80 8 7.8
100 10 7.3
120 10 6.4
150 12 6.3
200 14 6.1
300 17 5.7
500 22 6.0
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Clustered errors

In many problems the datapoints are clustered. Usually, the errors are assumed
independent across clusters, but possibly correlated within.

e.g., observations clustered by state, or school/grade, and so on.

There are numerous analytic “cluster-robust” error methods but they rely heavily on
asymptotics, and have problems with small samples and non-normality.

“Cluster wild bootstrap” (Cameron et al, 2008) is an alternative but works only under
strict conditions; cannot be easily extended (e.g., to “two-way clustering”).
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Which invariance works here?

Residual randomization offers a natural way of inference.

Work with invariances on the cluster level.

i.e., define G as:

permutations within clusters.

sign flips across clusters (equivalent to “cluster wild bootstrap”).

both operations; etc.
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Example: Clustered errors

Consider the following regression model:

yi = −1 + 0.2xi + εi,

where xi = i/n, and

εi ∼

{
N(0, 0.12) if xi ≤ 0.9

N(0, 52) if xi > 0.9.

Two clusters for the errors. One has much higher variance than the other.

The 95% confidence interval from OLS (with n = 200), is:

> confint(lm(y ~ x))
2.5 % 97.5 %

X -0.88 0.50

OLS fails badly to detect significance.
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Residual randomization with two clusters

Define G = {“as permutations within each cluster”}. (assume known clustering)

The p-value plot is shown below:
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The (inverted) 95% CI is much better centered than regular OLS.
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Validity under clustered errors

invariant condition

permutation with clusters λxλεp/n = o(1)

sign symmetry across clusters λxλεp
3 ∑J

c=1(n
2
c/n

2) = o(1)

both either

Here, λx refers to a leverage condition on X>X (e.g., condition number), and λε to a
leverage condition on the error distribution.

Under the standard regularity conditions in the literature, λx = O(1) and λε = O(1).
In RR, these quantities are allowed to increase.

These results also significantly extend Canay et.al. (2017) who showed that cluster wild
bootstrap is asymptotically valid when Jn < ∞ and

X>
c Xc ∝ (X>X).

This is a cluster homogeneity condition, and is generally strong.
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Finite-sample validity

Under a strict homogeneity condition, RR can be finite-sample exact!

Theorem (Summary)

Suppose that

1 The errors are sign symmetric across clusters (as defined earlier).

2 The homogeneity condition holds for some clustering.

Then, cluster-sign residual randomization test (based on Gs) and restricted OLS is
finite-sample exact.

Proof sketch: The approximation error tn(gε̂o)− tn(ε) satisfies

a′(X>
c Xc)

−1(X>X)(β̂o − β) ∝ a′β̂o − a0
H0= 0,
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Example: Behrens-Fisher problem

Angrist and Pischke (2009) and Imbens and Kolesar (2016) studied the following problem:

yi = β0 + β1di + εi,

where di is binary (treatment or control), and Var(εi) = diσ
2
1 + (1− di)σ

2
0 .

There are n1 =
∑

i di = 3 treated units, and n0 = 27 controls.

This is an instance of the Behrens–Fisher problem. Standard t-test does not work here
because σ2

0 , σ
2
1 are unknown.

No good methods available. Also, very small sample creates problems.

Here, an exact residual randomization test is possible!
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Example: Behrens-Fisher problem

Split units in three clusters, each cluster 1 treated unit and 9 controls:
(treated, control) = (1, 9), (1, 9), (1, 9).

1. Assume sign-symmetric errors across clusters.[standard assumption]

2. For every cluster c, X>
c Xc only depends on proportion of treated units in c,

which is the same for every c = 1, 2, 3, by construction!

So, X>
c Xc ∝ X>X as required.

The resulting randomization test is a cluster sign test with 3 clusters, and is exact.

[However, because of few clusters, minimum p-value is 1/8 = 0.125, and so we need to

randomize the test decision to bring it down to 0.05. Still valid, but loses power.]
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Panel (A). True β1 = 0.0

Error type, εi
normal t3 mixture

Control standard deviation, σ0
Method 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

BM 0.050 0.028 0.010 0.002 0.034 0.015 0.004 0.000 0.252 0.225 0.034 0.003

r-sign 0.095 0.012 0.000 0.000 0.067 0.012 0.001 0.000 0.213 0.010 0.001 0.000

r-exact 0.048 0.052 0.052 0.050 0.055 0.057 0.054 0.049 0.050 0.046 0.058 0.049

Panel (B). True β1 = 1.0

Method 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

BM 0.215 0.161 0.069 0.008 0.146 0.086 0.028 0.003 0.122 0.130 0.119 0.009

r-sign 0.448 0.149 0.007 0.000 0.270 0.065 0.003 0.000 0.214 0.122 0.004 0.000

r-exact 0.124 0.116 0.111 0.073 0.098 0.101 0.081 0.062 0.094 0.083 0.093 0.073

Panel (C). True β1 = 2.0

Method 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

BM 0.553 0.511 0.359 0.049 0.418 0.332 0.166 0.016 0.326 0.310 0.183 0.055

r-sign 0.899 0.632 0.090 0.000 0.655 0.290 0.032 0.000 0.978 0.673 0.070 0.001

r-exact 0.172 0.177 0.168 0.119 0.147 0.145 0.131 0.089 0.197 0.197 0.173 0.127

Table: Rejection rates of cluster sign test (r-sign), and exact randomization test (r-exact) for the
Behrens–Fisher problem. “BM” refers to an adjusted t-test proposed by Imbens and Kolesar
(2016) based on the bias correction method of McCaffrey and Bell (2002).
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Two-way (or multi-way) clustering

In many problems there are more than two clusters; e.g., (school, classroom), (state,
city), (firm, department), etc. “Dyadic regression” falls in this setting.

There are certain variants of “cluster-robust” error methods that have been extended to
two-way clustering (Cameron et al, 2011). Other approaches include (Davezies et.al.,

2018), (Menzel, 2017), (McKinnon et.al., 2017).

Again, these methods heavily rely on asymptotics, and may give invalid estimates
(e.g., non-positive definite covariance estimates).

In addition, the underlying assumptions are restrictive; e.g.,

- McKinnon et.al. (2017) require that the majority of “cells” become empty in the limit.
- (Davezies et.al., 2018) requires that the number of both types of clusters tends to infinity.
- (Menzel, 2017) focuses on estimating marginal expectations and not regression.
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Which invariance works here?

Residual randomization can be applied naturally in this setting.

A reasonable assumption is “exchangeability within each individual cluster”.

i.e., define G = “permutations of entire rows or entire columns”.

Residual randomization is valid as long as

p4λxλε(1/|row clusters|+ |col clusters|) = o(1).

Leverage quantities are very similar to clustered case (e.g., condition number of
X>X).

Test allows p → ∞ !

Test is valid (asymptotically) when both clusters grow.

When one cluster size stays finite, then the test can still be valid if we center the
data of the other cluster.
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Example: Dyadic regression

Suppose that datapoint i is in “row-cluster” r(i) and in “column-cluster” c(i).

Consider the dyadic regression model:

yi = β0 + β1|xr(i) − xc(i)|+ εi.

For the residual randomization test:

1 Fit constrained OLS and calculate restricted residuals ε̂o.

2 Arrange the residuals in rows and columns.

3 At every resampling, permute ε̂o row-wise and/or column-wise.

4 Use new set of residuals to generate new y and re-fit OLS.

5 Produce the p-value as usual.
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Panel (A). True β1 = 1.0

Error-covariate, (εi, xi)

(normal, normal) (normal, lognormal) (mixture, normal) (mixture, lognormal)

Sample size, n

100 625 2500 100 625 2500 100 625 2500 100 625 2500

HC .320 .167 .118 .392 .330 .238 .322 .172 .131 .437 .414 .311

2way robust .090 .061 .046 .114 .091 .062 .080 .041 .050 .101 .091 .057

RR .060 .057 .052 .047 .055 .045 .053 .037 .057 .053 .057 .050

Panel (B). True β1 = 1.2

100 625 2500 100 625 2500 100 625 2500 100 625 2500

HC .363 .279 .359 .488 .616 .734 .360 .267 .279 .470 .543 .675

2way robust .150 .537 .981 .301 .788 .997 .144 .524 .983 .286 .775 .997

RR .075 .134 .252 .155 .372 .609 .079 .144 .245 .157 .390 .601

Table: Rejection rates for HC2 robust errors, two-way robust errors (bootstrap), and the double
permutation test in dyadic regression study. Null hypothesis is H0 : β1 = 1.0.
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Concluding remarks

Residual randomization addresses inference in regression models with complex
error structure.

It does so in a unified way. Good practice: first think about invariances, then do
inference. The method is valid (asymptotically) in many settings.

Conditions are considerably weaker than bootstrap. And robust to
(ε,X)-distribution (e.g., heavy tails).

In extensive simulations, the method performs favorably to established bootstrap
variants, and “robust error” methods.
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Thank You.

“Life After Bootstrap: Residual Randomization Inference in Regression Models”
(working paper, 2019)

“Introduction to Residual Randomization: The R Package RRI”
(Technical report, 2019)

“Robust inference for high-dimensional linear models via residual randomization”
(with Wang et al, ICML 2021).

https://www.ptoulis.com/residual-randomization
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Extensions: High-dimensional regression

Consider the ridge estimator, β̂ridge. We can show that:

λ′β̂ridge − λ0 + µλ′P−1
µ β = λ′P−1

µ X>ε,

where Pµ = X>X + µI is the ridge matrix.

1. Thus, we can isolate the right term as our invariant:

tn(ε) = λ′P−1
µ X>ε,

2. and consider the left term as our test statistic,

Tn = λ′β̂ridge − λ0 + µλ′P−1
µ β̂

For β̂ we can either plug-in the ridge estimate or some LASSO estimate.

The rest of the procedure remains the same, and can handle (ostensibly) complex error
structures. See paper for detailed experiments.

23 / 29



Autocorrelated errors

In panel data, the errors may be autocorrelated:

yt = x′
tβ + εt.

For example, we may have εt = ρtεt−1 + ut, where ut is iid noise, and ρt ∈ (0, 1)
may be non-stationary.

There are several “HAC” methods in the literature for such models (White et al, 1980;

Andrews, 1991). Generally they are not robust as they are extensions of “HC” methods
with stronger assumptions.

Problems with heavy-tailed data, non-normality, and/or small samples.
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Which invariance works here?

Standard invariance concepts do not work here due to serial dependence.

However, for the AR(1) process:

εt
d
= −εt | {εt−1 = 0}.

The error series can be reflected around the time axis!
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t0 t1 t2

residual plot

t

We can reflect the residuals between the endpoints tj . Call this Gref.
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The “reflection” randomization test

1 Calculate the restricted residuals, ε̂o.

2 Order their absolute values, |ε̂o|, and select the J + 1 smallest values. Denote the
corresponding timepoints as t0, ..., tJ .

3 Define the clustering, {{t0, ..., t1}, {t1 + 1, ..., t2}, ..., {tJ−1 + 1, tJ}}.

4 Perform the cluster sign test based on the clustering from step 3.

+ Does not rely on normality.

+ Can work with non-stationary series.

+ Good empirical performance.
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Panel (A): ρ = 0.3

Error εt = ρεt−1 + ut, ut = ...

normal mixture

Covariates xt

iid autocorrelated iid autocorrelated

Method (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

OLS 0.052 0.054 0.073 0.078 0.053 0.050 0.073 0.071

HAC 0.066 0.112 0.065 0.112 0.066 0.145 0.070 0.130

reflection test, uncond. 0.031 0.030 0.034 0.034 0.045 0.048 0.042 0.042

reflection test, cond. 0.051 0.048 0.054 0.055 0.053 0.057 0.050 0.049

Panel (B): ρ = 0.8

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

OLS 0.048 0.048 0.341 0.339 0.049 0.050 0.336 0.346

HAC 0.050 0.087 0.104 0.128 0.053 0.097 0.102 0.141

reflection test, uncond. 0.022 0.023 0.024 0.027 0.031 0.029 0.032 0.030

reflection test, cond. 0.049 0.052 0.055 0.061 0.053 0.050 0.052 0.051

Table: Rejection rates for OLS, HAC errors, and the reflection test.
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Example: Complex panel data

Suppose panel data

yit = x′
itβ + εit,

where

xit = ρ1xi,t−1 + LN is autocorrelated with log-normal errors.

εit = ρ2εi,t−1 + ηi +N is autocorrelated with random “firm effect” and normal
errors.

What method to use here?

We can use Gref on (εit − ε̄i·) because of AR structure.

We can also permute εit with respect to i if ηi are exchangeable.

Simulated study with 5 firms, 200 timepoints, ρ1 = ρ2 = 0.8, ηi ∼ t5:

OLS HAC RR(uncond.) RR(cond.)
37.55 11.95 2.56 4.83

Code: https://www.dropbox.com/s/kaegbx29bgwc9k4/temple_WF.zip?dl=0
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