
Randomization Inference in Regression Models
RRI R Package

Panos Toulis∗
University of Chicago

Booth School of Business

DRAFT (February 9, 2021)
Latest version here

Abstract

Residual randomization is a method for testing and inference in regression models based on
invariance assumptions on the errors; e.g., inference assuming only exchangeability of errors,
or sign symmetry, or both. Compared to standard normal OLS these assumptions are weaker,
which adds robustness. Compared to bootstrap, residual randomization is more flexible, it does
not rely on asymptotic normality, and addresses the inference problem in a unified way. In this
technical report, we describe residual randomization in practice through the package RRI. This
report is a companion to the main paper [7] that contains details on theory and methods.

∗email: panos.toulis@chicagobooth.edu

1

https://sites.google.com/view/panos-toulis/residual-randomization

Contents

1 Introduction 3

2 Testing using RRI 4
2.1 Example . 4

3 Inference using RRI 6
3.1 Example . 6

4 Data Example 7
4.1 Clustered Errors . 8

5 Other Error Structures 9

6 Concluding remarks 9

A Bootstrap 9

B Details on Testing Algorithm 10

2

1 Introduction

Consider the linear regression model of the form:

y = Xβ + ε,

where y, ε ∈ Rn, X ∈ Rn×p, β ∈ Rp are the outcomes, errors, covariates, and parameters, respec-
tively. The goal is to perform inference on β relying on few assumptions. Throughout we use plain
OLS, β̂, as our baseline estimator. To do inference on β we generally rely on normal OLS theory
or bootstrap [1, 2, 3]. These approaches, however, rely on some implicit form of exhangeability in
the errors. This requirement has created problems in practice, for example, when errors are het-
erogeneous or autocorrelated. Furthermore, most methods generally rely on asymptotic normality,
which is sometimes a strong assumption, and certainly implausible in small-sample problems.

This technical report describes an alternative way for inference through residual randomization.
The fundamental idea is to base inference on assuming an invariance of the errors:

ε
d= gε,

where g ∈ G is a n× n matrix, and G is an algebraic group of operations such as permutations or
random signs. For example, suppose the errors are exchangeable so that

(ε1, . . . , εn) d= (επ(1), . . . , επ(n)),

where π denotes a permutation of n elements. In this case, g =
∑n
i=1 1i1′π(i), where 1i is a n-length

vector that is zero except at i-th element. The second key component of residual randomization
is to use a statistic Tn such that Tn

H0= tn(ε) for some function tn under some null of interest H0.
In principle, testing (and inference) are possible by comparing Tn with values {tn(gε) : g ∈ G}. In
practice, we use residuals in tn because the true errors are unknown.

For example, suppose that
yi = β1 + β2xi + εi,

and we want to test H0 : β2 = 0. Consider the test statistic Tn = β̂2. The standard approach is to
use some form of asymptotic normality for Tn to test H0. But this is not necessary. Note that we
can write Tn = a′(X>X)−1X>y, where a = (0, 1), and X is the n × 2 covariate matrix with i-th
row equal to (1, xi). If H0 is true then Tn = a′(X>X)−1X>ε ≡ tn(ε). What to compare Tn with?
To test H0, we would like to compare Tn with values {tn(πε) : π ∈ Sn}, i.e., values of tn for various
permutations of ε (Sn is the symmetric n-group). But the errors are unknown, so we rely on the
residuals. Thus, we

1. calculate restricted residuals ε̂r
i = yi − β̂r

1, where β̂r
1 is the OLS estimate β1 with fixed β2 = 0

(here, β̂r
1 = ȳ)

2. compare Tn with {tn(πε̂r)} to get a p-value.

A confidence interval for β2 is obtained by test inversion. Specifically, we can test a series of
hypotheses . . . , H0 : β2 = −10, . . . ,H0 : β2 = 10, . . . and report those endpoints for which the
p-value exceeds the desired level. This is, in a nutshell, the basic residual randomization method.

We structure this paper as follows. In Section 2 we consider the basic testing problem solved
by residual randomization, and present the related functionality in the RRI package. In Section 3
we consider the problem of inference. In Section 4 we illustrate on a real data example, and in
Section 5 we briefly discuss more complex error structures, such as autocorrelated errors.

3

2 Testing using RRI

The main functionality in the RRI package is to test the following linear hypothesis:

H0 : λ′β = λ1β1 + . . . λpβp = λ0. (2.1)

This includes the standard significance tests β1 = 0, . . . , βp = 0. Inversion of the tests leads to
confidence intervals (see next). There are two main functions in the package for testing H0:

• rrtest(model, g invar, ...). Testing under generic invariance supplied by g invar.

• rtest clust(model, type, clustering, ...). Testing under assumption of invariance of
the specified type within clusters defined by clustering.

The key objects here are:

• model. This a list of y, X, lam, lam0 that contains the data y, X and the coefficients λ, λ0
as defined above.

• g invar. The invariance function g : Rn → Rn as defined earlier; e.g., g invar= function(e)
sample(e) encodes exchangeability.

• clustering. A list that splits the datapoint indexes {1, . . . , n} in clusters; e.g., list(1:100)
defines only one cluster, whereas with as.list(1:100) every index has its own cluster.

2.1 Example

Consider a simple linear regression with two parameters:

> library(RRI)
> set.seed(123); n = 50
> X = cbind(rep(1, n), runif(n))
> beta = c(0, 0)
> y = X %*% beta + rnorm(n)

We wish to test H0 : β2 = 0. With standard OLS we can do this as follows:

> min(confint(fit)) > 0 | max(confint(fit)) < 0 # OLS t-stat reject?
[1] FALSE

The OLS test relies on an assumption that the errors are i.i.d. normal. However, we can use
residual randomization to do inference only under an assumption of exchangeability (or some other
form of invariance), without requiring independence or normality.

To do such inference using RRI we first need to consider what kind of invariance are we willing
to posit. Suppose we only want to assume that errors are exchangeable. Then, we proceed as
follows:

> model = list(y=y, X=X, lam=c(0, 1), lam0=0) # test H0: beta2=0
> g_invar = function(e) sample(e)
> rrtest(model, g_invar)
[1] 0

The function rrtest can encode any generic residual randomization test with an invariance
defined by g invar. The test above is equivalent to the following code:

4

> rrtest_clust(model, type="perm")
[1] 0

The function rrtest clust is more specific than rrtest in the sense it assumes that the invariance
of the specified type holds in clusters. Suppose, for example, that the datapoints come from two
hypothetical clusters (say split in half). Then we could do inference as follows:

> cl = list(1:25, 26:50) # two clusters
> rrtest_clust(model, type="perm", clustering=cl)
[1] 0

In this code the test operates under the assumption that the errors are exchangeable only within
the two specified clusters. Such flexibility is a key feature of RRI. In terms of invariances, there are
three types:

• type = "perm". Errors are exchangeable within clusters only. The default clustering is where
all datapoints are in one single cluster (equivalent to plain exchangeability)

• type = "sign". Errors are sign symmetric on the cluster level. The default clustering is
where each datapoint has its own cluster (similar to “wild bootstrap”)

• type = "double". Errors are both exchangeable within clusters and sign-symmetric across.
The default clustering is where each datapoint has its own cluster.

Let’s consider one more simulated example with heteroskedastic variance.

> set.seed(123); n = 200
> X = cbind(rep(1, n), 1:n/n)
> beta = c(-1, 0.2)
> ind = c(rep(0, 0.9*n), rep(1, .1*n)) # cluster indicator
> y = X %*% beta + rnorm(n, sd= (1-ind) * 0.1 + ind * 5) # heteroskedastic

This example is set up such that there are two clusters, and error is heteroskedastic across clusters.
Because the variance in one cluster is much larger than the other, normal OLS is misled to think
that β2 is not significant:

> confint(lm(y ˜ X + 0)) # normal OLS does not reject H0: beta2 = 0
2.5 % 97.5 %

X1 -1.2681800 -0.4711499
X2 -0.8789845 0.4963558

In fact, OLS inference goes the opposite direction since true β2 = 0.2 and is positive. We can now
do inference assuming within-cluster exchangeability (which here is a correct assumption) using
RRI:

> cl = list(which(ind==0), which(ind==1))
> model = list(y=y, X=X, lam=c(0, 1), lam0=0)
> rrtest_clust(model, "perm", cl) # errors are exchangeable within clusters
[1] 1

We see that residual randomization correctly rejects the null.

5

3 Inference using RRI

As mentioned before we can invert the tests of the previous section to produce confidence intervals.
There are two main functions in RRI for that:

• rrinf(y, X, g invar, ...). Inference under generic invariance supplied by g invar.

• rrinf clust(y, X, type, clustering, ...). Inference under invariance of the specified
type within clusters defined by clustering.

The objects in the arguments were explained in Section 2.

3.1 Example

Let’s start with a simple simulated example to illustrate inference with RRI:

> set.seed(123); n = 100
> X = cbind(rep(1, n), runif(n))
> beta = c(-1, 1)
> y = X %*% beta + rnorm(n)
> confint(lm(y ˜ X + 0))

2.5 % 97.5 %
X1 -1.3980246 -0.6198951
X2 0.2318356 1.5885017

To produce 95% (by default) confidence intervals for β with RRI we have to decide on the underlying
invariance. Suppose we want to assume plain exchangeability. We can use the generic rrinf that
expects a user-defined invariance function g invar:

> g_invar = function(e) sample(e) # Assume exchangeable errors.
> rrinf(y, X, g_invar)

midpoint estimate 2.5% 97.5%
[1,] -1.0089599 -1.4276536 -0.5902661
[2,] 0.9449301 0.2497005 1.6401597

We see that this is similar to OLS. This is not surprising since the errors are indeed iid normal and
there are no clusters.

To illustrate the difference between the methods let’s go back to the cluster example of the
previous section. We initialize as follows:

> set.seed(123); n = 200
> X = cbind(rep(1, n), 1:n/n)
> beta = c(-1, 0.2)
> ind = c(rep(0, 0.9*n), rep(1, .1*n)) # cluster indicator
> y = X %*% beta + rnorm(n, sd= (1-ind) * 0.1 + ind * 5) # heteroskedastic

We can do plot(y, X[, 2]) to see the cluster heteroskedastic effect. Here are the OLS intervals:

> confint(lm(y ˜ X + 0))
2.5 % 97.5 %

X1 -1.2681800 -0.4711499
X2 -0.8789845 0.4963558

6

We see that the OLS confidence interval for β2 is imprecise in the sense that it is centered on negative
values even though β2 = 0.2. We can get confidence intervals from RRI assuming exchangeability
within clusters as follows:

> cl = list(which(ind==0), which(ind==1)) # define the clustering
> rrinf_clust(y, X, "perm", cl) # improved CI through clustered errors

midpoint estimate 2.5% 97.5%
[1,] -1.0957261 -1.13682813 -1.0546241
[2,] 0.1278477 0.05692279 0.1987726

We see a clear improvement now as the confidence intervals are better centered.

4 Data Example

Now we work on a real-world data example. We use the Duncan dataset1 that contains data from
1950 on income and education levels across various occupations, and information on the perceived
“prestige” of every occupation. Since the data are proportions we will make a logit transformation:

> data("Duncan")
> for(j in 2:4) { Duncan[, j] = log(Duncan[, j] / (100.5 - Duncan[, j])) }
> n = nrow(Duncan)
> y = Duncan$prestige; X = cbind(rep(1, n), Duncan$income, Duncan$education)
> colnames(X) = c("intercept", colnames(Duncan[, 2:3]))

Here are the OLS confidence intervals:

> ols = lm(prestige ˜ income + education, data=Duncan)
> confint(ols)

2.5 % 97.5 %
(Intercept) -0.2158245 0.3722788
income 0.4600268 1.0283294
education 0.2481290 0.6509819

We see that both income and education are significant for prestige.
Next, we can use (residual) bootstrap to try a nonparametric approach to inference—see Ap-

pendix A for a description of bootstrap methods in regression, and [4] for some examples on this
dataset. We use the boot function in the boot R package:

> yhat = fitted(ols)
> e = residuals(ols)
> boot.fn <- function(data, ind){
+ yboot = yhat + e[ind]
+ coef(lm(yboot ˜ X + 0))
+ }
> out = boot(Duncan, boot.fn, R = 999, maxit=100)
> out

original bias std. error
t1* 0.07822712 0.0059865963 0.14424626
t2* 0.74417811 0.0020797617 0.13613217
t3* 0.44955543 0.0005607954 0.09723125

1https://vincentarelbundock.github.io/Rdatasets/doc/car/Duncan.html

7

https://vincentarelbundock.github.io/Rdatasets/doc/car/Duncan.html

> confint(out)
Bootstrap bca confidence intervals

2.5 % 97.5 %
1 -0.2236692 0.3747571
2 0.4873804 1.0099769
3 0.2721077 0.6562315

We see that the bootstrap package reports the original OLS estimates and the bootstrap standard
errors. Here, the bootstrap errors and intervals are quite similar to OLS. Note that the boot
function performs inference assuming exhangeability since it is permuting the datapoint indexes.
It is therefore less flexible than residual randomization.

Now we can use use the RRI package for residual randomization inference. We start with an
assumption of exchangeability (as in bootstrap):

> rrinf_clust(y, X, type="perm", num_R = 5000)
midpoint estimate 2.5% 97.5%

intercept 0.07822712 -0.3811251 0.5375793
income 0.74417811 0.5007566 0.9875997
education 0.44955543 0.2567006 0.6424103

The main difference with OLS and bootstrap is that randomization reports a wider interval for the
intercept. However, it reports similar errors for the other parameters. To produce intervals under
error sign symmetry we just need to change the type:

> rrinf_clust(y, X, type="sign", num_R=5000)
midpoint estimate 2.5% 97.5%

intercept 0.1078627 -0.1736757 0.3894012
income 0.8157727 0.4434809 1.1880645
education 0.4394052 0.1754985 0.7033118

The intervals here are even wider but not qualitatively different than before. This adds robustness
and a capability for useful sensitivity analysis through “plug-and-play” of different invariances —
this is a key feature of residual randomization.

4.1 Clustered Errors

In the Duncan dataset there is one additional variable for the type of occupation: professional
(prof), blue collar (bc), and white collar (wc). Suppose we think that it is implausible that errors
are exchangeable across these types, but they are plausibly exchangeable within a type. Residual
randomization offers a simple way to deal with this more complex cluster structure.

To illustrate suppose that errors are exchangeable only within the occupation type cluster:

> cl = sapply(levels(Duncan$type), function(t) which(Duncan$type==t))
> rrinf_clust(y, X, type = "perm", cl, num_R=5000)

midpoint estimate 2.5% 97.5%
intercept -0.2181291 -0.5885744 0.1523162
income 0.5866700 0.3862052 0.7871349
education 0.5307575 0.4191047 0.6424103

The intervals are now considerably sharper compared to unclustered exchangeability. This is rea-
sonable since we put more structure into the inference.

8

5 Other Error Structures

Residual randomization can handle even more complex types of error invariance. For example, we
can use a certain reflective symmetry of time series to do inference with autocorrelated errors [7,
Section 6.1], or use penalized estimators within residual randomization for high-dimensional re-
gression [7, Section 6.2]. There are empirical evaluations showing that residual randomization can
outperform state-of-art methods in these settings as well. The caveat is that there are no theoretical
guarantees (as of now) regarding validity. We will focus on such more complex error structures in
future versions of this technical report.

6 Concluding remarks

Residual randomization is a new method for testing and inference in regression models with complex
error structure. The method works in a variety of error structures, particularly clustered errors.
The package RRI provides core residual randomization functionality through the functions rrtest,
rrtest clust, rrinf, rrinf clust. Using the package we can consider different invariances for
the same problem, and such “plug-and-play” format makes residual randomization more flexible
and data-adaptive than bootstrap.

References

[1] B Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, pages
1–26, 1979.

[2] Bradley Efron. Nonparametric estimates of standard error: the jackknife, the bootstrap and
other methods. Biometrika, 68(3):589–599, 1981.

[3] Bradley Efron and Robert Tibshirani. Bootstrap methods for standard errors, confidence in-
tervals, and other measures of statistical accuracy. Statistical science, pages 54–75, 1986.

[4] John Fox. Bootstrapping regression models. An R and S-PLUS Companion to Applied Regres-
sion: A Web Appendix to the Book. Sage, Thousand Oaks, CA. URL http://cran. r-project.
org/doc/contrib/Fox-Companion/appendix-bootstrapping. pdf, 2002.

[5] David A Freedman et al. Bootstrapping regression models. The Annals of Statistics, 9(6):1218–
1228, 1981.

[6] SC Peters and DA Freedman. Some notes on the bootstrap in regression problems. Journal of
Business & Economic Statistics, 2(4):406–09, 1984.

[7] Panos Toulis. Life after bootstrap: residual randomization inference in regression models. 2019.

A Bootstrap

The pairs bootstrap resamples y and (the rows of) X to create a new dataset, (y∗, X∗), and
then obtains a new OLS estimate, β̂∗. The residual bootstrap [5, 6] operates conditionally on X,
calculates residuals ε̂ = y −Xβ̂ and defines the bootstrap dataset as (y∗, X) to obtain β̂∗, where
y∗ = Xβ̂ + ε̂∗, and ε̂∗ is a sample with replacement from ε̂.

9

B Details on Testing Algorithm

Here, we present in detail the main testing algorithm implemented in the RRI package (function
rrtest). As mentioned before, the basic test of the RRI package is the hypothesis:

H0 : λ′β = λ1β1 + . . . λpβp = λ0.

To test H0 we proceed as follows (below we use the model list elements without the specifier
model$.. for simplicity).

1. Define function tn(e) = λ′(X>X)−1X>e.

2. Estimate OLS, β̂, by regressing y on X:

3. Calculate observed test statistic Tn = λ′β̂ − λ0: Note that under H0 we have

Tn = λ′β̂ − λ0 = tn(ε) + λ′β − λ0
H0= tn(ε).

4. Calculate the restricted residuals, ε̂r = y −Xβ̂r, where

β̂r = arg min
β:λ′β=λ0

||y −Xβ||2

are the OLS estimated restricted under the null. See restricted OLS c function in the RRI
package:

5. Repeat: Transform the residuals according to random g from G and calculate tn(gε̂r).
This forms the randomization distribution of the test statistic.

6. Compare Tn with the randomization distribution, e.g., through a two-sided p-value. We can
reject at α-level if the p-value is smaller than (1− α)/2.

10

	Introduction
	Testing using RRI
	Example

	Inference using RRI
	Example

	Data Example
	Clustered Errors

	Other Error Structures
	Concluding remarks
	Bootstrap
	Details on Testing Algorithm

