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Abstract
We propose a residual randomization procedure
designed for robust Lasso-based inference in the
high-dimensional setting. Compared to earlier
work that focuses on sub-Gaussian errors, the pro-
posed procedure is designed to work robustly in
settings that also include heavy-tailed covariates
and errors. Moreover, our procedure can be valid
under clustered errors, which is important in prac-
tice, but has been largely overlooked by earlier
work. Through extensive simulations, we illus-
trate our method’s wider range of applicability as
suggested by theory. In particular, we show that
our method outperforms state-of-art methods in
challenging, yet more realistic, settings where the
distribution of covariates is heavy-tailed or the
sample size is small, while it remains competitive
in standard, “well behaved” settings previously
studied in the literature.

1. Introduction
The Lasso (Tibshirani, 1996) and its variants are typically
used to estimate the coefficients of a linear model in the
high-dimensional setting where the number of covariates,
p, is larger than the number of samples, n. The Lasso has
been shown to possess many desirable theoretical proper-
ties and has proven fruitful in applications across nearly
all scientific domains (Bühlmann & Van De Geer, 2011).
This widespread use has recently generated much interest in
procedures for performing inference using Lasso estimates.

However, for parameters which are zero or nearly zero,
the Lasso point estimates may have an irregular distribu-
tion, and naı̈vely constructing confidence intervals typically
results in invalid inference. To overcome these difficul-
ties, various procedures have been proposed. Wasserman
& Roeder (2009) and Meinshausen et al. (2009) both used
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sample splitting procedures to form valid p-values. Zhang
& Zhang (2014), Van de Geer et al. (2014), and Javanmard
& Montanari (2014) proposed the desparsified and debiased
Lasso, which adds a one step correction to the Lasso esti-
mate. The resulting estimate is not sparse, but under certain
conditions, it has asymptotically negligible bias. The debi-
ased/desparsified estimate is asymptotically normal and can
be used for inference.

An alternative approach for inference in high-dimensional
linear models is the bootstrap. Chatterjee & Lahiri (2011)
proposed a residual bootstrap procedure for the adaptive
Lasso (Zou, 2006). One crucial requirement with this ap-
proach is the “beta-min” condition, which requires the non-
zero parameters to be large enough in absolute value (i.e.,
much larger than n−1/2). This condition can be overly
restrictive in cases where the primary aim is to test null
hypotheses on the significance of regression coefficients of
the formH0 : βj = 0. To circumvent this problem, Dezeure
et al. (2017) and Zhang & Cheng (2017) both proposed boot-
strap procedures based on the desparsified Lasso (Van de
Geer et al., 2014), which are capable of performing simulta-
neous inference over a set of parameters in the linear model;
i.e., H0 : βj = 0 for all j ∈ J ⊆ [p] = {1, . . . , p}. Zhang
& Cheng (2017) proposed bootstrapping the linearized part
of the desparsified Lasso with a Gaussian multiplier boot-
strap, while Dezeure et al. (2017) proposed using either
a wild bootstrap or a residual bootstrap procedure for the
entire estimator.

The above procedures are typically obtained under strong
regularity conditions on covariates and require i.i.d. sub-
Gaussian errors. Therefore, they may perform poorly in
more realistic settings where n is relatively small, the co-
variates and errors are non-Gaussian and/or heavy-tailed, or
have complex structures, such as heterogeneity or clustering.

In contrast, randomization methods (Fisher et al., 1935;
Pitman, 1937; Kempthorne, 1952) are non-parametric and
typically exact in finite samples, which makes them ro-
bust (Lehmann & Romano, 2006, Chapter 15). Randomiza-
tion procedures leverage structure in the data for testing and
inference —e.g., permutation tests exploit exchangeability
through permuting the data—and rely less on analytical
assumptions or asymptotic arguments.
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We show that a robust alternative for inference in high-
dimensional linear models is possible through the use of
residual randomization, which was first proposed by Freed-
man & Lane (1983a;b) as an extension of Fisher’s random-
ization test. Residual randomization builds a test that is
exact in the idealized case where the true errors are known,
and remains asymptotically valid when using regression
residuals in lieu of the true errors. Recently, Toulis (2019)
extended the original residual randomization procedure to
include complex error structures (e.g., clustered errors), and
showed that the procedure is asymptotically valid and em-
pirically effective in the low-dimensional setting where p
is fixed and n grows, including settings with heterogeneity
and clustering. Toulis (2019) also proposed an extension
to the high-dimensional setting (different than the one we
propose), but did not give any theoretical guarantees.

1.1. Contributions

In this paper, we propose a novel residual randomization
procedure for conducting hypothesis tests and computing
confidence intervals for parameters in a high-dimensional
linear model. In Section 2.3, we define a class of oracle
tests that are exact for finite samples. However, these ora-
cle tests are infeasible, and so we develop an approximate
implementation for each test in the class. Broadly speaking,
our procedure selects a specific test from the class for which
the approximate but feasible test is close to the oracle. Thus,
we explicitly prioritize controlling the empirical size of the
test. Our procedure is specifically designed to be robust to
small sample sizes and non-Gaussianity in both covariates
and errors. This is in contrast to previous procedures that
prioritize testing power and shorter confidence intervals.

We show theoretically that our procedure is valid even when
the covariates and errors are sub-Weibull as opposed to the
sub-Gaussian condition previously required in the literature.
We also show that our procedure is sound when the errors
have clustered dependence. Indeed, we see empirically
that our residual randomization method is comparable to
state-of-art methods in “well behaved” high-dimensional
benchmarks and is superior in more complex settings, e.g.,
when n is small, the covariates are non-Gaussian, or the
errors are heavy-tailed or heterogeneous.

2. Methodology
2.1. Setup

Throughout we let | · |q and ‖ · ‖q denote the vector q-norm
and matrix q-norm, respectively. For any positive integer d,
we let [d] = {1, . . . , d}. For X ∈ Rn×p, let Xi,: denote the
ith row and X:,v denote the vth column. We let ej denote
the jth standard basis; i.e., a vector whose jth element is 1
and all other elements are 0.

We assume that the data Y ∈ Rn are generated from the
linear model

Y = Xβ + ε, (1)

where β ∈ Rp are the linear coefficients, X ∈ Rn×p are
the covariates, and ε ∈ Rn is the vector of (unobservable)
errors. Thus, Xi,: corresponds to the covariates for the ith
observation and X:,v corresponds to the vth covariate. Let
s denote the sparsity of β such that |β|0 ≤ s.

In contrast to previous work which requires sub-Gaussian
covariates and errors, we allow Xi,: and εi to follow sub-
Weibull(α) distributions. Sub-Weibull random variables are
a class of distributions with tails of the form exp(−|x|α)
(Kuchibhotla & Chakrabortty, 2018; Vladimirova et al.,
2020). The class of sub-Gaussian and sub-exponential dis-
tributions can be obtained as a subclass by setting α equal
to 2 and 1, respectively. However, when α < 1, the tails can
be heavier than sub-exponential. Finally, we also assume
that Xi,: are drawn i.i.d., and Xi,: and εi are uncorrelated
so that E(Xi,:εi) = 0.

We propose a procedure to test linear hypotheses of the form

H0 : a>β = a0, (2)

for some a ∈ Rp and a0 ∈ R; we then invert the test to
form confidence intervals. The form in (2) includes many
hypotheses of interest; e.g., setting a = ej and a0 = 0
implies H0 : βj = 0, setting a = ej − ek and a0 = 0
implies H0 : βj = βk. In Remark 2 we briefly discuss how
the procedure can be generalized to tests of the form H0 :
A>β = a0 where A ∈ Rp×d and a0 ∈ Rd. This would
allow for simultaneous inference as in Zhang & Cheng
(2017) and Dezeure et al. (2017).

2.2. Residual Randomization

Following the framework of Toulis (2019), we require two
key constructs: (1) A set G of linear maps G : Rn 7→ Rn

such that Gε d
= ε, conditional on X; and (2) An invariant

tn : Rn → R, where tn(ε)
d
= tn(Gε) for all G ∈ G and

any finite n. We emphasize that all the test we propose is
conditional on X .

Given these two definitions, if we can find a test statistic,
Tn(Y,X), such that Tn(Y,X) = tn(ε) under H0, then
we can compare the observed value of Tn with {tn(Gε) :
G ∈ G} to test H0. Indeed, conditioned on X and ε (or
alternatively X and Y ), the random variable

π =
∑
G∈G

I{tn(Gε) ≥ Tn}/|G|, (3)

is uniform over the set {0, . . . , |G|}/|G|. Thus, π can be
used as a p-value and rejecting the null hypothesis when



Robust Inference for Lasso

π ≤ π0 yields a hypothesis test with exact size π0
1 (save

for the discreteness in π which can be easily remedied by
adding uniform noise to π or increasing |G|). We consider
the following three invariances for the distribution of ε.
Exchangeability: If all elements of ε are exchangeable,
then G could be all n × n permutation matrices. This in-
cludes the standard setting with i.i.d. errors.

Sign Symmetry: If εi
d
= −εi for all i ∈ [n], then G could

be all n × n diagonal matrices with ±1 on the diagonal.
This allows for heteroskedastic errors where εi may depend
on Xi,:, but is symmetric around 0 conditional on Xi,:.
Clustered Exchangeability: In many cases, the data can be
partitioned into disjoint clusters, such that exchangeability
is only reasonable within a cluster; e.g., to model country-
specific effects in users of an online platform; G should then
be the set of within-cluster permutations. This generalizes
exchangeability, but we will keep the two settings distinct.

In the low-dimensional setting, where n � p, Toulis
(2019) considered tests of the form a>β = a0 and used
the test statistic Tn =

√
n(a>β̂ − a0), where β̂ is the

least squares estimate of β, and set the invariant tn(u) =√
na>(X>X)−1X>u. Since β̂ = β + (X>X)−1X>ε,

under the null hypothesis that a>β = a0,

Tn =
√
n(a>β̂ − a0) =

√
na>(β̂ − β) = tn(ε). (4)

Thus, given the true errors ε, we could form an exact p-value
as in Eq. (3). In practice, ε is unknown so one would instead
use the residuals, ε̂ = Y −Xβ̂, or the restricted residuals,
y − Xβ̂r, where β̂r is the restricted OLS estimates under
H0. In this case, the test is approximate, but as shown in
Toulis (2019), it can attain the correct size asymptotically.

Remark 1 The robustness properties of residual random-
ization can be deduced from (3). Specifically, the perfor-
mance of the test does not depend on the distribution of the
errors. Similarly, regularity conditions on X are not needed
because the test is conditioned on X . Finally, the decision
of the test remains invariant to monotone transformations of
tn, and so the test remains robust to rescaling of the data. In
our experiments, we demonstrate that the robustness proper-
ties of the exact test (using the true errors) are also inherited
by the approximate procedure using the residuals.

2.3. High-Dimensional Residual Randomization

In the high-dimensional setting, where p > n, the OLS
estimate β̂ is ill-defined and the low-dimensional residual
randomization method cannot be directly applied. In this
section, we propose adjustments appropriate for the high-
dimensional setting and show that this test can be further
optimized for robustness.

1We describe a one sided test, but a two-sided test could be
similarly defined.

Instead of the OLS estimator, we use a version of the debi-
ased Lasso (Javanmard & Montanari, 2014) which corrects
for the regularization bias by adding a term proportional to
the subgradient of the objective at the Lasso solution β̂l(λ1),
where λ1 is the penalty parameter. When it is obvious, we
will simply write β̂l instead of β̂l(λ1). Appropriate val-
ues of λ1 are problem dependent, and we give theoretically
sufficient choices in Section 3.

Specifically, for some M ∈ Rp×p, we use the estimator

β̂d,M = β̂l +
1

n
MX>(Y −Xβ̂l). (5)

To form the high-dimensional test statistic, we replace β̂ in
(4) with β̂d,M :

T (M)
n =

√
n(a>β̂d,M − a0). (6)

Setting S = 1
nX
>X , this yields

T (M)
n =

√
na>(I −MS)(β̂l − β) +

1√
n
a>MX>ε

+
√
n(a>β − a0).

(7)

For some fixed β̂l and any M ∈ Rp×p, comparing T (M)
n to

t(M)(Gε) =
√
na>(I−MS)(β̂l−β) +

1√
n
a>MX>Gε (8)

for all G ∈ G would yield an exact test as described in
(3) under the null, since a>β − a0 = 0. When the null
hypothesis does not hold such that a>β = a1 6= a0, under
weak conditions, maxG

1√
n
a>MX>Gε will be bounded

at a rate of log(pn). However, T (M)
n contains an additional√

n(a>β − a0) =
√
n(a1 − a0) term which will grow as

O(
√
n) leading to rejection of the null hypothesis.

This procedure could be applied for any M .2 Thus, in con-
trast to the low-dimensional setting, in the high-dimensional
setting, we have not just a single test, but a class of tests
indexed by M , all of which are exact under the null hy-
pothesis. For any M , we call this the oracle randomization
distribution. Since all oracle tests are exact, a good rule of
thumb would be to select the matrix M , which gives the
test with the most power, or alternatively, which—when
inverted—yields the shortest confidence intervals. In some
sense, this is the motivation behind Zhang & Cheng (2017)
and Dezeure et al. (2017) setting M as an estimate of Σ−1,
albeit for a bootstrap procedure which is not exact. As sug-
gested by the Gauss-Markov theorem, this should asymptot-
ically give the shortest confidence intervals.

2If a>MX> = 0, then the distribution over G would be
a point mass. Nonetheless some randomization procedure for
breaking ties could be used to maintain exact size. In (13), letting
λ < 1 will prevent such an M from being feasible.
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However, since we do not have access to β̂l − β or ε, we
cannot directly use any of these oracle tests. Thus, we use
the following invariant with ε̂ = Y −Xβ̂l = ε+X(β− β̂l)
being the residuals from the Lasso regression:

t̂(M)(Gε̂) =
a>MX>Gε̂√

n
=
a>MX>G(ε+X(β − β̂l))√

n

=
1√
n
a>MX>GX(β − β̂l) +

1√
n
a>MX>Gε.

(9)

For any M , we refer to the resulting distribution—when se-
lecting G uniformly from G—as the attainable randomiza-
tion distribution, because it only involves quantities which
we can directly access and compute. The oracle (8) and
attainable (9) distributions share the same second term, but
differ in their first terms (1/

√
n)a>MX>GX(β− β̂l) and√

na>(I−MS)(β̂l−β). Thus, each attainable distribution
no longer retains the exact size that its corresponding oracle
test enjoys. In particular, selecting an attainable test based
on minimizing its oracle’s confidence interval length may
result in poor finite sample performance.

Instead of prioritizing short confidence intervals, we pri-
oritize the correct size of the test by selecting M to mini-
mize the distance between the attainable test and its corre-
sponding oracle test. Indeed, in Section 3 we show that the
Wasserstein-1 distance between the oracle and attainable
distributions is upper bounded by

√
n|β̂l−β|1

(
|a>(I −MS)|∞ +

∑
G

∣∣a>MX>GX/n
∣∣
∞

|G|

)
.

(10)

Roughly speaking, |a>(I − MS)|∞ regulates the dif-
ference between the means of the attainable and ora-
cle distributions, while

∑
G |a>MX>GX/n|∞/|G| is the

cost of using residuals instead of the true errors. Intu-
itively, one would expect (and we confirm empirically)
that prioritizing the minimization of |a>(I −MS)|∞ over∑
G |a>MX>GX/n|∞/|G| has a larger effect on the ac-

curacy of the attainable test’s p-value. Towards this end, we
upweight the first term by setting δ ≥ 1 and select M which
minimizes:

δ|a>(I −MS)|∞ +

∑
G

∣∣a>MX>GX/n
∣∣
∞

|G| . (11)

While (11) can be solved using a linear program solver,
for computational convenience, instead of directly optimiz-
ing (11) with respect to M , we instead solve

min
λ∈[0,1)

δ|a>(I −MλS)|∞ +

∑
G

∣∣a>Mλ

∣∣
1

∣∣X>GX/n∣∣∞
|G| ,

(12)
where

Mλ = arg min
M
|a>M |1

s.t.
∣∣∣a>(I −MS)

∣∣∣
∞
≤ λ.

(13)

Algorithm 1 Test a>β = a0

Require: Y , X , a>, a0, G, λ1, δ
Compute Lasso estimate β̂l(λ1) and ε̂ = Y −Xβ̂l
Compute λ? and Mλ? from (13) and (12)
Compute β̂d,Mλ? = β̂l + 1

nMλ?X
>(Y −Xβ̂l)

Let T (Mλ? )
n =

√
n(a>β̂d,Mλ? − a0)

for G ∈ G do
Set t̂(Mλ? )(Gε̂) = 1√

n
a>Mλ?X

>Gε̂

end for
Return

∑
G I{t̂(Mλ? )(Gε̂)>T

(Mλ? )
n }

|G|

The problem in (13) is the CLIME (Cai et al., 2011) problem,
and we solve it using the fastclime package (Pang et al.,
2014). In Section 3 we show that, for any δ ≥ 1, usingMλ? ,
where λ? is a minimizer of (12), ensures that the selected
attainable and oracle distributions converge.

To select M , Javanmard & Montanari (2014) solve a prob-
lem with the same constraint as (13), but instead minimize
the M>i,:SMi,: for all i ∈ [p], which—similar to Zhang &
Cheng (2017) and Dezeure et al. (2017)—prioritizes shorter
confidence intervals. When it is sparse, the inverse co-
variance of Xi,: can be consistently estimated by solving
(13) (Cai et al., 2011). In that case the residual randomiza-
tion procedure should still produce asymptotically efficient
confidence intervals and would be asymptotically equivalent
to the other procedures. However, in finite samples, we see
empirical improvements in robustness. We detail our proce-
dure in Algorithm 1, which produces a p-value for testing
the null hypothesis that a>β = a0.

Remark 2 Thus far, we have assumed a 1-dimensional hy-
pothesis test. However, similar to Zhang & Cheng (2017)
and Dezeure et al. (2017), this can generalized be to testing
several null-hypotheses simultaneously. In particular, one
might instead use

Tn = |
√
n(A>β̂d − a0)|∞ (14)

and the corresponding invariant

tn(Gε̂) =

∣∣∣∣ 1√
n
A>MX>Gε̂

∣∣∣∣
∞
. (15)

We focus on the 1-dimensional case for expositional clarity.

2.4. Confidence Intervals

To form a univariate confidence interval for βj , we invert
the hypothesis test for βj = a0 (Rosenbaum, 2003). In
particular, for a = ej we can compute the distribution of
t(Gε̂) and set τπ0/2 and τ1−π0/2 to the π0/2 and 1− π0/2
quantiles. Finally, to invert the level π0 two-sided test we
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select a0 such that
√
n(β̂d − a0) ∈ [τπ0/2, τ1−π0/2]. This

is equivalent to the confidence interval for β:(
β̂d −

τ1−π0/2√
n

, β̂d −
τπ0/2√
n

)
. (16)

Note that as opposed to the multiplier bootstrap confidence
intervals proposed by Zhang & Cheng (2017), the confi-
dence intervals in (16) may be asymmetric because they
are produced from the attainable randomization distribution,
which may be asymmetric. This is similar to the procedure
proposed by Dezeure et al. (2017).

3. Main Results
Let Ft(X, ε) denote the oracle randomization distribution
of tn in (8) conditional on X and ε when G is selected
uniformly from G. Let Ft̂(X, ε) denote the attainable distri-
bution; i.e., the distribution of t̂n in (9) when G is chosen
uniformly from G. As the notation implies, both Ft(X, ε)
and Ft̂(X, ε) depend on X, ε and are random distributions
with respect toX, ε. We give a finite sample characterization
of the Wasserstein-1 distance between these two random
distributions under certain assumptions, and we show that
the distance goes to 0 with probability going to 1. All proofs
are given in the supplement.

We first state Lemma 1 which, as mentioned in Section 2.3
shows that the distance between the oracle and attainable
distributions can be decomposed into the estimation error of
β̂l as well as two terms which, roughly speaking, regulate
the difference in means and variance.

Lemma 1 For any M ∈ Rp×p, let d1 (Ft(X, ε), Ft̂(X, ε))
denote the Wasserstein-1 distance between the oracle ran-
domization distribution and attainable randomization distri-
butions. Then,

d1 (Ft(X, ε), Ft̂(X, ε)) ≤
∣∣∣β̂l − β∣∣∣

1
×[∣∣∣√na>(I −MS)

∣∣∣
∞

+
∣∣∣a>M ∣∣∣

1
EQ
(∣∣∣X>GX/√n∣∣∣

∞

)]
.

(17)
where Q is the uniform distribution over G in G.

We now provide conditions under which the two terms in
(17) can be controlled for the Mλ? selected by (13) and
(12). Condition 1 requires that the tails of Xi,: and εi
be sub-Weibull and bounds certain moments of the ob-
served covariates. In Condition 1, ‖εi‖Ψα denotes the
Orlicz norm of εi with Ψα(x) = exp(|x|α) − 1 and
‖X̃i,:‖J,Ψα = sup|θ|2=1 ‖X̃>i,:θ‖Ψα is the joint Orlicz norm.

Condition 1 (Covariates) Suppose thatXi,: ∈ Rp are gen-
erated i.i.d. with mean 0 and covariance Σ. Let λmax

and λmin denote the largest and smallest eigenvalues of
Σ. Suppose each element of Xi,: is sub-Weibull(α) and

the de-correlated covariates X̃>i,: = Σ−1/2X>i,: are jointly
sub-Weibull(α) with

max
(
‖X̃>i,:‖J,Ψα ,max

v
‖Xi,v‖Ψα

)
≤ κ. (18)

We also define

Γ = max

{
max

u,v∈[p]2
E
(

[Xi,uXi,v ]
2
)
, max
v∈[p]

E
([
a
>

Σ
−1
X
>
i,:Xi,v

]2)
,

max
v∈[p]

E
([
a
>

Σ
−1
X
>
i,:Xj,v

]2)}
.

(19)

We assume the high-dimensional regime where n and p
both grow and p can be much larger than n. Condition 2
also implicitly restricts the 2-norm of Σ and Σ−1 through
κ?. In particular, we require n log(n)−4/α log(pn)1−4/α to
scale linearly with the condition number of Σ. We will also
require 8

√
Γ(log(pn) + 2 log(p))/n < 1 so that Σ−1 is in

the feasible set of (13) for some λ < 1 with probability
tending to 1.

Condition 2 (Sample Size) Suppose

κ? = κ2 max

(
|a|2
√
λmax√
λmin

, 1

)
(20)

and

n > max

{
4C2

α(κ?)2 [log(2n)]4/α [3 log(pn)]4/α−1

Γ
,

64Γ(log(pn) + 2 log(p))

} (21)

for some constant Cα which only depends on α.

We now give conditions on the set of group actions, G.

Condition 3 (Exchangeability) Let G ⊂ Gp where Gp is
the set of all matrices corresponding to a permutation g
of [n] such that (i) [n] = N1 ∪ N2 for some N1 and N2

equal-sized disjoint sets, and (ii) for all j ∈ N1, g(j) ∈ N2

and for all j ∈ N2, g(j) ∈ N1.

Condition 4 (Sign Symmetry) Let G ⊂ Gs where Gs is
the set of all diagonal matrices containing only ±1 such
that there is an equal number of positive and negative 1’s.

Condition 5 (Cluster Exchangeability) Suppose there ex-
ist nc disjoint sets Lk with [n] =

⋃nc
k Lk and |Lk| =

n/nc = J such that {εi}i∈Lk are exchangeable, but may
otherwise be dependent. That is, G ⊂ Gc, where Gc is the
set of all block diagonal matrices where the GLk,Lk block
is a permutation matrix satisfying Condition 3.

In Conditions 3, 4, and 5 we implicitly assume that n is even
to simplify the analysis; when n is odd, the last observation
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may be discarded. A more subtle requirement is that we do
not assume the support of the randomization distribution is
over all possible maps in either Gp, Gc, or Gs. These sets
grow exponentially in n. Instead, we consider the more
practical scenario where |G| is fixed with respect to n. This
is similar to using the bootstrap or a Monte Carlo procedure
with a number of draws that may be increased when a better
approximation is desired, but in general stays fixed with
n. Condition 5 also implicitly requires that |Lk| > 2 since
|Gc| = 1 if all clusters have size 2 because there would be
only 1 sub-matrix which satisfies Condition 3 for each Lk.

Given the conditions on the covariates and group actions,
we now state Lemma 2 and 3, which show that the two terms
in Lemma 1 can be controlled.

Lemma 2 Under Conditions 1 and 2 and either Condi-
tion 3, 4, or 5, we have

P

∑G |X
>GX|∞
|G|

≥ 8

√
2Γ(log(pn) + 2 log(p))

n

 ≤ 6|G|(np)−1
.

(22)

Lemma 3 Under the Conditions 1 and 2, we have

P

|a>(I − Σ
−1
S|∞ ≥ 8

√
Γ(log(pn) + 2 log(p))

n

 ≤ 3(np)
−1
.

(23)

Thus, with probability at least 1− 3(np)−1 the feasible set

of (13) is non-empty with λ = 8
√

Γ(log(pn)+2 log(p))
n and

|a>Mλ|1 ≤ |a>Σ−1|1. (24)

Corollary 1 Assume the conditions of Lemma 3 and
Lemma 2. Then with probability greater than 1−3(np)−1−
6|G|(np)−1 using M? selected from (13) and (11) yields

d1 (Ft(X, ε), Ft̂(X, ε)) ≤
∣∣∣β̂l − β∣∣∣

1
×[

8
(
δ +

∣∣∣a>Σ−1
∣∣∣
1

)√
2Γ(log(pn) + 2 log(p))

]
.

(25)

Corollary 1 implies that using any procedure that can pro-
duce an estimate β̂l such that |β̂l − β|1 = Op((log p)−1/2)
is sufficient for showing that the oracle and attainable distri-
butions converge in Wasserstein distance. For concreteness,
we consider two settings and apply existing results on Lasso
estimation. However, other estimators (i.e., SCAD or best
subset selection) can also be used as long as |β̂−β|1 attains
the correct rate. First, we consider Lasso estimates when εi
is sub-Weibull(α) as in Kuchibhotla & Chakrabortty (2018)
who require some additional assumptions summarized in
Condition 6 that follows. We also consider the setting of
Belloni et al. (2016) who require sub-Gaussian covariates
and errors, but allow for clustered error dependence.

Condition 6 (Lasso with sub-Weibull errors) Suppose
εi is sub-Weibull(α) with ‖εi‖Ψα ≤ κ. Suppose that

λmin ≥ 54 min
1≤h≤p

{
Ξn,h +

32kΞn,h
h

}
(26)

where

Ξn,h = 14
√

2

√
Υn,hh log(36np/h)

n

+
Cακ

2h(log(2n))2/α(h log(36np/h))2/α

n
Θh = {θ ∈ Rp : |θ|0 ≤ h, |θ|2 ≤ 1}

Υn,h = sup
θ∈Θh

var

[(
X>i,:θ

)2
]
.

(27)

Furthermore, suppose that the Lasso penalty term λ1 is set
such that

λ1 = 14
√

2σ

√
log(np)

n
+
Cα/2κ

2(log(2n))2/α(2 log(np))2/α

n
, (28)

and in addition to Condition 2

n >
C2
α/2κ

4(log(pn))8/α−1

σ2
, (29)

where σ = maxv∈[p] var(Xi,vεv) and Cα/2 is a constant
only depending on α.

Theorem 1 (Sub-Weibull Errors and Covariates)
Suppose Conditions 1, 2, and 6 hold. Under ei-
ther Condition 3 or 4, with probability not less than
1− 6|G|+3

np − 3
np −

3
n ,

d1 (Ft(X, ε), Ft̂(X, ε)) ≤
1360

(
δ +

∣∣∣a>Σ−1
∣∣∣
1

)
σs
√

Γ

λmin

log(np)
√
n

.

(30)

Recall in Condition 5 with clustered errors, nc denotes the
number of clusters, where each cluster has size J . Then,
Theorem 2, presented below, combines Corollary 1 with
the results of Belloni et al. (2016) on Lasso estimates under
clustered errors. In particular, they propose the Cluster-
Lasso procedure and show that its performance depends on
a term which measures the within-cluster dependence:

ıJ = J min
1≤v≤p

E

 1

J

J∑
j=1

Ẍ
2
ijv ε̈

2
ij

/E

 1

J

 J∑
j=1

Ẍ
2
ijv ε̈

2
ij

2 , (31)

where Ẍijv and ε̈ij denotes the vth covariate and jth obser-
vation in the ith cluster which have been adjusted by their
respective cluster means. Under complete independence
ıJ = J , and the rate in Theorem 2 recovers the rate under
independent errors. In the worst case, however, ıJ = 1, so
that each cluster is essentially one observation. It is worth
noting that Belloni et al. (2016) allow cluster dependence
in both covariates and errors; however, we allow for depen-
dent errors but still require the covariates to be i.i.d. For
completeness, we include the assumptions of Belloni et al.
(2016) in the supplement.
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Figure 1. Empirical coverage and confidence interval length for the active variables with n = 50, p = 100, 1000 replications and
exchangeable errors. The top two panels are for s = 4 and the bottom two are for s = 15. The first and third panels show empirical
coverage rates for each procedure; the sandwich coordinate is denoted by ∆, isolated is �, and adjacent is ◦. In the bottom panel, the line
segment spans the .25 quantile and .75 quantile of the confidence interval lengths and the single point indicates the .99 quantile. Instead
of showing the quantiles for each coordinate, we instead plot the maximum .25 (or .75, .99) quantile across the sandwich, isolated, and
adjacent coordinates. The labels on the horizontal axis indicate a different simulation setting and are coded as “Covariate - Errors” where
the different covariate and error settings are detailed in the main text. For some settings and procedures, the empirical coverage drops
below .6 and is not shown.

Theorem 2 (Clustered Errors) Suppose Conditions 1, 2,
and 5 hold and |G| = O(1). Further assume the conditions
of Theorem 1 of Belloni et al. (2016) and let β̂l be the
Cluster-Lasso. Then d1 (Ft(X, ε), Ft̂(X, ε)) is

Op

(
s
(
δ +

∣∣a>Σ−1
∣∣
1

)√
Γp(log(pn) + log(p))

√
ncıJ

)
. (32)

In Theorems 1 and 2, we explicitly include the term
|a>Σ−1|1, and for convergence, we require |a>Σ−1|1 =
O(
√
n/(s log(np))).

Remark 3 Convergence in Wasserstein-1 implies weak con-
vergence, as well as L1 convergence of the quantile and
distribution functions. Similar to Bickel & Freedman (1981),
Bickel & Freedman (1983), and Lopes (2014), we use this
to justify the procedure’s use for hypothesis tests and confi-
dence intervals.

4. Numerical Experiments
We compare nominal 95% confidence intervals (CIs) over
1000 trials of BLPR (Liu et al., 2017), HDI (Dezeure
et al., 2017), DLASSO (Javanmard & Montanari, 2014)3,
SILM (Zhang & Cheng, 2017) and residual randomiza-
tion (RR) with (n = 50, p = 100) and (n = 100, p =
300). We slightly modified SILM to output marginal
confidence intervals and ensure that the modified vari-
ance estimator does divide by 0 if the support of the es-
timated β is n. Additional details are in the supplement,
and the code is available at: https://github.com/
atechnicolorskye/rrHDI.

In each setting, we sample random X ∈ Rn×p with rows
drawn i.i.d. from either (N1)N(0, I); (G1) Gamma(1, 1)−
1; (N2) N(µ, 1) with P (µ = −2) = P (µ = 2) = 0.5;

3https://web.stanford.edu/ montanar/sslasso/code.html

https://github.com/atechnicolorskye/rrHDI
https://github.com/atechnicolorskye/rrHDI
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Figure 2. Empirical coverage and confidence interval length for the active variables with n = 50, p = 100, 1000 replications and sign
symmetric errors. The top two panels are for s = 4, the bottom two panels are for s = 15. All other elements remain the same as Figure 1.

(NT) N(0,Σ) for Σij = .8|i−j|; (GT) Gamma(Σ)− 1 for
Σij = .8|i−j|; or (WB) each element is a centered Weibull
with scale = 1 and shape = 1/2.

We sample the errors ε ∈ Rn from (N1) N(0, 1); (G1)
Gamma(1, 1) − 1; (N2) N(µ, 1) with P (µ = −2) =
P (µ = 2) = 0.5; (WB) a centered Weibull with scale = 1
and shape = 1/2; (HN) normal with N(0, 2‖Xi‖22/p); or
(HM) N(µ, 2‖Xi‖22/p) with P (µ = −2) = P (µ = 2) =
0.5. The exchangeable settings exclude the heteroskedastic
cases of HN and HM; the symmetric settings exclude G1
and WB.

For a fair comparison, we have HDI use wild bootstrap for
the symmetric settings. Also, apart from SILM, empirical
performance is generally not affected by the scale of the co-
variates; however, in certain settings SILM performed very
poorly when the covariates were not standardized. Thus, we
standardize the covariates to benefit SILM.

For each setting, we draw β ∈ Rp with s = 4 or 15 active
(i.e., non-zero) coordinates drawn from the Rademacher
distribution and set the remaining p − s inactive coordi-
nates to 0. We arrange entries in β in such that there is
one active entry between two inactive entries (isolated), one

active between an active entry and an inactive entry (adja-
cent), and one active entry between two other active entries
(sandwiched). We also use the same scheme for the inactive
variables. We then set Y = Xβ + ε.

To obtain Mλ? , we solve (13) to up to 500 iterations using
fastclime (Pang et al., 2014) which starts with λ = 1
and uses warm starts to progressively shrink λ. We further
select λ? via (12) by using a grid search over the λ values
used by fastclime with δ = 10, 000. Empirically, a
larger value of δ generally results in better coverage, but
comes at the expense of confidence interval length; broadly
speaking though, we see that for δ ≥ 1, 000, the perfor-
mance of the proposed procedure is fairly insensitive to the
value of δ.

Since in practice we do not know the appropriate Lasso
tuning parameter λ1 a priori, for the residual randomiza-
tion procedure we employ the Square-Root Lasso (Belloni
et al., 2011) implemented in RPtests (Shah & Buhlmann,
2017) to obtain estimates for β̂l. We follow (Zhang &

Cheng, 2017) and rescale ε̂ by
√
n/(n− |β̂l|0) as a finite-

sample correction. For all settings, we use 1, 000 group
actions/bootstrap resamples.
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In Figures 1 and 2 we show the empirical coverage and
the confidence interval length for the active variables when
(n = 50, p = 100) for exchangeable and symmetric errors
respectively. In the supplement, we provide corresponding
figures for the inactive variables as well as results for (n =
100, p = 300).

Among the competing methods, SILM performs the best,
and has generally satisfactory performance across all set-
tings except the Toeplitz case and the setting with Weibull
covariates for s = 4. For s = 4, HDI generally outper-
forms DLASSO, but when s = 15, HDI’s performance de-
creases drastically. Generally, BLPR performs the worst and
when s = 15 has coverage less than .6. All the competing
methods perform poorly when the covariates have Toeplitz
covariance. The sandwich coordinates typically have the
lowest coverage and the isolated coordinates typically have
empirical coverage closest to the nominal rate.

In contrast, we see that RR nearly obtains the nominal 95%
coverage regardless of exchangeability or sign symmetry,
and across all experimental configurations. This remarkable
stability can be explained by our selection procedure for
M and the general properties of randomization tests (see
Introduction and Remark 1). At the same time, RR typically
yields larger interval lengths. While the interval length from
RR is generally longer than the competing methods, this is
especially true when the covariates have Toeplitz covariance.
We posit that this is because solving (13) for poorly condi-
tioned sample covariances can yield large |a>M |1 and thus
results in larger confidence intervals.

In the supplement, we show the empirical coverage for
the inactive coordinates with (n = 50, p = 100) as
well as all coordinates when (n = 100, p = 300). For
(n = 100, p = 300), the results are qualitatively similar
to the results for (n = 50, p = 100); RR almost always
has the best empirical coverage followed by SILM, HDI,
DLASSO, and then BLPR. However, all methods (including
RR) generally perform less well; in particular, in contrast to
the (n = 50, p = 100) case, there are some settings where
RR does not attain nominal coverage. For the inactive vari-
ables when (n = 50, p = 100) and (n = 100, p = 300),
all procedures except BLPR typically achieve (or exceed)
nominal coverage.

Table 1 gives the average computation time (in seconds)
required for each of the procedures with n = 100, p = 300.
We form a confidence interval for each of the 300 coordi-
nates using 1, 000 group actions/bootstrap resamples. Un-
surprisingly, RR requires more computational effort than
competing procedures that appeal to asymptotic limiting
distributions (BLPR and DLASSO). However, the computa-
tional effort is comparable to the resampling-based methods
in our experiments (HDI and SILM).

Table 1. Mean Computation Time in Seconds.
Method BLPR HDI DLASSO SILM RR

Time (s) 18.9 374.2 11.2 61.1 135.1

5. Discussion
The theoretical guarantees coupled with the excellent empiri-
cal performance suggest that residual randomization is an ap-
pealing alternative for robust inference in high-dimensional
linear models. Across a wide range of settings, it attains
nominal coverage even when n is small or the errors are
heavy tailed. Of course, this does not come for free, as
we observe that the confidence intervals produced are gen-
erally larger than those produced by competing methods—
especially when there is strong cross-correlation in covari-
ates. Nonetheless, we believe that in most practical applica-
tions slightly larger confidence intervals is a small price to
pay in exchange for better, more robust coverage.

While the procedure is asymptotically valid for any fixed
δ ≥ 1, one practical concern is specifying a tuning parame-
ter δ when selecting M?. If δ is too small, this may result in
degraded empirical performance; however, the simulations
show that there is a threshold of δ for which our procedure
performs well across all settings. This threshold seems to
coincide with a point at which the length of our confidence
intervals become insensitive to increasing δ. Thus, this
threshold can be well approximated—at least via heuristics.

Nonetheless, in Section 3 of the supplement, we describe an
alternative procedure which also performs well empirically
and is also asymptotically valid when an upper bound on Γ
in (19) is known.

Several questions may be fruitful to pursue in the future.
First, to form confidence intervals, we require control of
|β̂l − β|1. However, it would be interesting to investigate
residual randomization procedures which only require small
in-sample prediction error; i.e., 1

n |X(β̂l − β)|. This would
allow testing individual coordinates of β without assuming
stringent restricted eigenvalue or irrepresentability condi-
tions. There are additional advantages of the residual ran-
domization framework which could be further exploited
methodologically. For example, we primarily focused on se-
lectingM , but one could also use the observed covariatesX
to select specific invariances G ∈ G which optimize certain
test properties.
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