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1. Proofs of theorems for main method

We recall the procedure below:

θ+
n = θn−1 − γnh(θ+

n ), (1)

θn = θ+
n − γnεn. (Stochastic Proximal Point Algorithm) (2)

Symbol ‖ · ‖ denotes the L2 vector/matrix norm. The parameter space for θ is Θ ⊆ Rp, and is
convex. For positive scalar sequences (an) and (bn), we write bn = O(an) to express that bn ≤ can,
for some fixed c > 0, and every n = 1, 2, . . .; we write bn = o(an) to express that bn/an → 0 in the
limit where n→∞. Notation bn ↓ 0 means that bn is positive and decreasing towards zero.

Existence and uniqueness of θ+
n as a solution of (1) is guaranteed by the following assumption,

that we make throughout the paper without further mention:

There exists a convex potential F such that ∇F = h. (3)

This assumption is not strictly necessary but covers most applications, including settings where
stochastic gradient descent is applied. In Section 6 of the paper, for instance, we study a quantile
regression problem where h is scalar-valued and non-decreasing, which ensures the existence of F
and θ+

n .
Depending on which result we state, the stochastic proximal point algorithm operates under a

combination of the following assumptions.

Assumption 1. It holds that γn = γ1n
−γ , γ1 > 0 and γ ∈ (0, 1].

Assumption 2. Function h is Lipschitz with parameter L, i.e., for all θ1, θ2 ∈ Θ,

‖h(θ1)− h(θ2)‖ ≤ L‖θ1 − θ2‖.

Assumption 3. Function h satisfies either

(a) (θ − θ?)>h(θ) ≥ 0, for all θ ∈ Θ;
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(b) (θ − θ?)>h(θ) > 0, for all θ ∈ Θ \ {θ?};

(c) (θ − θ?)>h(θ) ≥ µ‖θ − θ?‖2, for some fixed µ > 0, and all θ ∈ Θ.

Assumption 4. There exists fixed σ2 > 0 such that, for all n = 1, 2, . . .,

E(εn|Fn−1) = 0, and E(‖εn‖2|Fn−1) ≤ σ2.

Assumption 5. Let Ξn = E
(
εnε
>
n |Fn−1

)
, then ‖Ξn − Ξ‖ → 0 for fixed positive-definite matrix

Ξ. Furthermore, if σ2
n,s = E(I‖εn‖2≥s/γn‖εn‖2), then for all s > 0,

∑n
i=1 σ

2
i,s = o(n) if γn ∝ n−1,

or σ2
n,s = o(1) otherwise.

Note about proofs. A key equation of implicit stochastic approximation is Equation (1):

θ+
n + γnh(θ+

n ) = θn−1. (4)

As this fixed-point equation has a unique solution, θ+
n is a deterministic function of θn−1.

Theorem 1. Suppose that Assumptions 1, 3(b), and 4 hold with γ ∈ (1/2, 1]. Then, the iterates
θn of the stochastic proximal point algorithm of Equation (2) converge almost surely to θ?; i.e.,
θn → θ?, such that h(θ?) = 0, almost surely.

Proof. By Equation (2) and using Assumption 4, we have:

E
(
‖θn − θ?‖2|Fn−1

)
≤ ‖θ+

n − θ?‖2 + γ2
nσ

2 .

Taking norms in (4):

‖θ+
n − θ?‖2 = ‖θn−1 − θ?‖2 − 2γn · h(θ+

n )>(θ+
n − θ?)− γ2

n‖h(θ+
n ‖2 (5)

which together with the previous inequality implies:

E
(
‖θn − θ?‖2|Fn−1

)
≤ ‖θn−1 − θ?‖2 − 2γn · h(θ+

n )>(θ+
n − θ?)− γ2

n‖h(θ+
n ‖2 + γ2

nσ
2

≤ ‖θn−1 − θ?‖2 − 2γn · h(θ+
n )>(θ+

n − θ?) + γ2
nσ

2 .

We now use an argument—due to Gladyshev (1965)— that is also applicable to the classical
Robbins-Monro procedure; see, for example, Benveniste et al. (1990, Section 5.2.2), or Ljung et al.
(1992, Theorem 1.9). Random variable Rn = h(θ+

n )>(θ+
n − θ?) is positive by Assumption 3(b), and∑

γi =∞ and
∑
γ2
i <∞ by Assumption 1. Therefore, we can invoke the supermartingale lemma

of Robbins and Siegmund (1985) to infer that ‖θn − θ?‖2 → B > 0 and
∑
γnRn < ∞, almost

surely. If B 6= 0 then lim inf ‖θn − θ?‖ > 0, and thus the series
∑
n γnRn diverges sinc

∑
γi = ∞

(Assumption 1). This is a contradiction. Thus, B = 0.

Theorem 2. Suppose that Assumptions 1, 2, 3(a), and 4 hold. Let Γ2 = E‖θ0 − θ?‖2 +
σ2
∑∞
i=1 γ

2
i + γ2

1σ
2. Then, if γ ∈ (2/3, 1], there exists n0,1 < ∞ such that, for all n > n0,1,

the iterate θn of the stochastic proximal point algorithm of Equation (2) satisfies:

E(F (θn)− F (θ?)) ≤
[

2Γ2

γγ1
+ o(1)

]
n−1+γ .
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If γ ∈ (1/2, 2/3), there exists n0,2 <∞ such that, for all n > n0,2,

E(F (θn)− F (θ?)) ≤
[
Γσ
√
Lγ1 + o(1)

]
n−γ/2.

Otherwise, γ = 2/3 and there exists n0,3 <∞ such that, for all n > n0,3,

E(F (θn)− F (θ?)) ≤

[
3 +

√
9 + 4γ3

1Lσ
2/Γ2

2γ1/Γ2
+ o(1)

]
n−1/3.

Proof. Note that θ+
n +γnh(θ+

n ) = θn−1 is equivalent to θ+
n = arg minθ{ 1

2γn
‖θ−θn−1‖2 +F (θ)}.

Therefore, comparing the values of the expression for θ = θ+
n and θ = θn−1, we obtain

F (θ+
n ) +

1

2γn
‖θ+
n − θn−1‖2 ≤ F (θn−1). (6)

Since θn−1 − θ+
n = γnh(θ+

n ), Inequality (6) can be written as

F (θn−1)− F (θ+
n )− 1

2
γn‖h(θ+

n )‖2 ≥ 0. (7)

Note that F (θ?) ≤ F (θ), for all θ. Thus, we have:

F (θ+
n )− F (θ?) ≤ h(θ+

n )>(θ+
n − θ?) [by convexity Assumption 3(a)]

F (θ+
n )− F (θ?) ≤ ‖h(θ+

n )‖ · ‖θ+
n − θ?‖

[E(F (θ+
n )− F (θ?))]

2 ≤ [E(‖h(θ+
n )‖ · ‖(θ+

n − θ?‖)]2

[E(F (θ+
n )− F (θ?))]

2 ≤ E(‖h(θ+
n )‖2)E(‖θ+

n − θ?‖2) [by Cauchy-Schwarz inequality]. (8)

Therefore,

E(‖θn − θ?‖2) = E(‖θ+
n − θ?‖2)− 2γnE((θ+

n − θ?)>εn) + γ2
nE(‖εn‖2)

= E(‖θ+
n − θ?‖2) + γ2

nE(‖εn‖2)

≤ E(‖θn−1 − θ?‖2) + γ2
nσ

2. [by Inequality (5) and Assumption 4]

≤ E(‖θ0 − θ?‖2) + σ2
n∑
i=1

γ2
i . [by induction.] (9)

For brevity, define hn = E(F (θn) − F (θ?)) and h+
n = E(F (θ+

n ) − F (θ?)). It follows that hn >
0, h+

n > 0, everywhere. We want to derive a bound for hn. Since E(εn|Fn−1) = 0, it follows from
Assumption 4 that E(‖θ+

n − θ?‖2) ≤ E(‖θn − θ?‖2) + γ2
nσ

2. Using Inequality (9), we get

E(‖θ+
n − θ?‖2) ≤ E(‖θ0 − θ?‖2) + σ2

∞∑
i=1

γ2
i + γ2

nσ
2 ≤ Γ2. (10)

From Inequality (8) and Inequality (10), we get

E(‖h(θ+
n )‖2) ≥ 1

Γ2
[E(F (θ+

n )− F (θ?))]
2 =

1

Γ2
h+
n

2
. (11)
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Furthermore, by convexity of F , Assumption 3(a), and Assumption 4, we have that

F (θn) = F (θ+
n − γnεn)

F (θn) ≤ F (θ+
n )− γnh(θ+

n )>εn + γ2
n

L

2
‖εn‖2 [by Lipschitz continuity]

F (θn)− F (θ?) ≤ F (θ+
n )− F (θ?)− γnh(θ+

n )>εn + γ2
n

L

2
‖εn‖2

hn ≤ h+
n + γ2

n

Lσ2

2
. [by taking expectations.] (12)

Now, in Inequality (7), we substract F (θ?) from the left-hand side, take expectations, and combine
with Inequality (11) to obtain

hn−1 ≥ h+
n +

1

2Γ2
γnh

+
n

2
, Rγn(h+

n ). (13)

Function Rγn(x) defines a nondecreasing map, since its argument, h+
n , is always positive. Let R−1

γn
denote its inverse, which is also nondecreasing. Thus, we obtain h+

n ≤ R−1
γn (hn−1). Using Equation

(13), we can rewrite Inequality (12) as

hn ≤ R−1
γn (hn−1) + γ2

n

Lσ2

2
. (14)

Inequality (14) is our main recursion, since ultimately we want to upper-bound hn. Our solution

strategy is as follows. We will try to find a base sequence (bn) such that bn ≥ R−1
γn (bn−1) + γ2

n
Lσ2

2 .
Since one can take bn to be increasing arbitrarily, we will try to find the smallest possible sequence
(bn) that satisfies the recursion. To make our analysis more tractable we will search in the family
of sequences bn = b1n

−β , for various values b1, β > 0. Then, bn will be an upper-bound for hn. To
see this inductively, assume that hn−1 ≤ bn−1 and that hn satisfies (14). Then, hn ≤ R−1

γn (hn−1) +

γ2
n
Lσ2

2 ≤ R−1
γn (bn−1) + γ2

n
Lσ2

2 ≤ bn, where the first inequality follows from the monotonicity of Rγn ,
and the second inequality follows from definition of bn.

Now, the condition for bn can be rewritten as bn−1 ≤ Rγn(bn−γ2
n
Lσ2

2 ), and by definition of Rγn
we get

bn−1 ≤ bn − γ2
n

Lσ2

2
+ γn

1

2Γ2
(bn − γ2

n

Lσ2

2
)2 (15)

Using bn = b1n
−β and γn = γ1n

−γ (Assumption 1), we obtain

b1[(n− 1)−β − n−β ] +
Lσ2γ2

1

2
n−2γ +

Lσ2γ3
1b1

2Γ2
n−β−3γ − γ1b

2
1

2Γ2
n−2β−γ − L2σ4γ5

1

8Γ2
n−5γ ≤ 0. (16)

We have (n− 1)−β − n−β < 1
1−βn

−1−β , for n > 1. Thus, it suffices to have

b1
1− β

n−1−β +
Lσ2γ2

1

2
n−2γ +

Lσ2γ3
1b1

2Γ2
n−β−3γ − γ1b

2
1

2Γ2
n−2β−γ ≤ 0, (17)

where we dropped the n−5γ term without loss of generality. The positive terms in Inequality (17)
are n−1−β , n−2γ , and n−β−3γ , and the only negative term is of order n−2β−γ . In order to find the
largest possible β to satisfy (17), one needs to equate the term n−2β−γ with the slowest possible
term with a positive coefficient, i.e., set 2β + γ = min{1 + β, β + 3γ, 2γ}. However, β + 3γ > 1 + β
and β + 3γ > 2γ, and thus 2β + γ = min{1 + β, 2γ}, which implies only three cases:
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(a) 1 + β < 2γ, and thus 2β + γ = 1 + β, which implies β = 1− γ. Also, 1 + β < 2γ ⇒ 2− γ < 2γ,
and thus γ ∈ (2/3, 1]. In this case, b1 will satisfy (17) for all n > n0,1, for some n0,1, if

b1
1− β

<
γ1b

2
1

2Γ2
⇔ b1 >

2Γ2

γγ1
. (18)

(b) 2γ < 1 + β, and thus 2β + γ = 2γ, which implies β = γ/2. Also, 1 + β > 2γ ⇒ 1 + γ/2 > 2γ,
and thus γ ∈ (1/2, 2/3). In this case, b1 will satisfy (17) for all n > n0,2, for some n0,2, if

γ2
1Lσ

2

2
<
γ1b

2
1

2Γ2
⇔ b1 > Γσ

√
Lγ1. (19)

(c) 2γ = 1 + β, and thus 2γ = 1 + β = 2β + γ, which solves to γ = 2/3 and β = 1/3. In this case,
we need

b1
1− β

+
γ2

1Lσ
2

2
<
γ1b

2
1

2Γ2
. (20)

Because all constants are positive in Inequality (20), including b1, it follows that

b1 >
3 +

√
9 + 4γ3

1Lσ
2/Γ2

2γ1/Γ2
. (21)

Remarks. The constants n0,1, n0,2, n0,3 depend on the problem parameters and the desired accuracy
in the bounds of Theorem 2. It is straightforward to derive exact values for them. For example,

consider case (a) and assume we picked b1 such that
γ1b

2
1

2Γ2 − b1
1−β = ε > 0. Ignoring the term n−3γ−β

(for simplicity), Inequality (17) becomes

εn−2+γ ≥ Lσ2γ2
1

2
n−2γ ⇒ n ≥ (

Lσ2γ2
1

2ε
)c ≡ n0,1, (22)

where c = 1/(3γ − 2) > 0 since γ ∈ (2/3, 1]. Parameter n0,1 can therefore be set according to
desired accuracy ε. Similarly, we can derive expressions for n0,2 and n0,3.

Theorem 3. Suppose that Assumptions 1, 3(c), and 4 hold. Let ζn = E(‖θn − θ?‖2) and
define κ = 1 + 2γ1µ, where the θn is the n-th iterate of the stochastic proximal point algorithm of
Equation (2). If γ < 1, then, for every n > 1, it holds that

ζn ≤ exp{− log κ · n1−γ}ζ0 + σ2 γ1κ

µ
n−γ + O(n−γ−1).

Otherwise, if γ = 1, it holds that

ζn ≤ exp{− log κ · log n}ζ0 + σ2 γ1κ

µ
n−1 + O(n−2).

Proof. First we prove two lemmas that will be useful for Theorem 3.
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Lemma 1. Consider a sequence bn such that bn ↓ 0 and
∑∞
i=1 bi = ∞. Then, there exists a

positive constant K > 0, such that

n∏
i=1

1

1 + bi
≤ exp(−K

n∑
i=1

bi). (23)

Proof. The function x log(1 + 1/x) is increasing-concave in (0,∞). From bn ↓ 0 it follows
that log(1 + bn)/bn is non-increasing. Consider the value K = log(1 + b1)/b1. Then, (1 + bn)−1 ≤
exp(−Kbn). Successive applications of this inequality yields Inequality (23).

Lemma 2 (Toulis and Airoldi (2017)). Consider sequences an ↓ 0, bn ↓ 0, and cn ↓ 0 such
that, an = o(bn),

∑∞
i=1 ai = A <∞, and there is n′ such that cn/bn < 1 for all n > n′. Define,

δn ,
1

an
(an−1/bn−1 − an/bn) and ζn ,

cn
bn−1

an−1

an
, (24)

and suppose that δn ↓ 0 and ζn ↓ 0. Pick a positive n0 such that δn+ζn < 1 and (1+cn)/(1+bn) < 1,
for all n ≥ n0.
Consider a positive sequence yn > 0 that satisfies the recursive inequality,

yn ≤
1 + cn
1 + bn

yn−1 + an. (25)

Then, for every n > 0,

yn ≤ K0
an
bn

+Qn1y0 +Qnn0+1(1 + c1)n0A, (26)

where K0 = (1 + b1) (1− δn0 − ζn0)
−1

, Qni =
∏n
j=i(1 + ci)/(1 + bi), and Qni = 1 if n < i, by

definition.

Corollary 1. In Lemma 2 assume an = a1n
−α and bn = b1n

−β, and cn = 0, where α > β,
and a1, b1, β > 0 and 1 < α < 1 + β. Then,

yn ≤ 2
a1(1 + b1)

b1
n−α+β + exp(− log(1 + b1)n1−β)[y0 + (1 + b1)n0A], (27)

where n0 > 0 and A =
∑
i ai <∞.

Proof. In this proof, we will assume, for simplicity, (n − 1)−c − n−c ≤ n−1−c, c ∈ (0, 1), for
every n > 0. It is straightforward to derive an appropriate bound for each value of c. Furthermore,
we assume

∑n
i=1 i

−γ ≥ n1−γ , for every n > 0. Formally, this holds for n ≥ n′, where n′ in practice
is very small (e.g., n′ = 14 if γ = 0.1, n′ = 5 if γ = 0.5, and n′ = 9 if γ = 0.9, etc.)
By definition,

δn =
1

an
(
an−1

bn−1
− an
bn

) =
1

a1n−α
a1

b1
((n− 1)−α+β − n−α+β)

=
1

n−αb1
[(n− 1)−α+β − n−α+β ]

≤ 1

b1
n−1+β . (28)
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Also, ζn = 0 since cn = 0. We can take n0 = d(2/b1)1/(1−β)e, for which δn0 ≤ 1/2. Therefore,
K0 = (1 + b1)(1 − δn0)−1 ≤ 2(1 + b1); we can simply take K0 = 2(1 + b1). Since cn = 0,
Qni =

∏n
j=i(1 + bi)

−1. Thus,

Qn1 ≥ (1 + b1)−n, and

Qn1 ≤ exp(− log(1 + b1)/b1

n∑
i=1

bi), [by Lemma 1.]

Qn1 ≤ exp(− log(1 + b1)n1−β). [because

n∑
i=1

i−β ≥ n1−β.] (29)

Lemma 2 and Ineqs. (29) imply

yn ≤ K0
an
bn

+Qn1y0 +Qnn0+1(1 + c1)n0A [by Lemma 2 ]

≤ 2
a1(1 + b1)

b1
n−α+β +Qn1 [y0 + (1 + b1)n0A] [by Ineqs. (29), c1 = 0]

≤ 2
a1(1 + b1)

b1
n−α+β + exp(− log(1 + b1)n1−β)[y0 + (1 + b1)n0A], (30)

where the last inequality also follows from Ineqs. (29).

Proof of Theorem 3. Now we are ready to prove the main theorem. By definition, θn = θ+
n−γnεn,

and thus, by Assumption 4,

E(‖θn − θ?‖2) ≤ E(‖θ+
n − θ?‖2) + γ2

nσ
2. (31)

Also by definition we have γnh(θ+
n ) + θ+

n = θn−1, and thus

‖θn−1 − θ?‖2 = ‖θ+
n − θ?‖2 + 2γn(θ+

n − θ?)>h(θ+
n ) + γ2

n‖h(θ+
n )‖2. (32)

Therefore,

‖θ+
n − θ?‖2 + 2γn(θ+

n − θ?)>h(θ+
n ) ≤ ‖θn−1 − θ?‖2

‖θ+
n − θ?‖2 + 2γnµ‖θ+

n − θ?‖2 ≤ ‖θn−1 − θ?‖2 [by Assumption 3(c)]

‖θ+
n − θ?‖2 ≤

1

1 + 2γnµ
‖θn−1 − θ?‖2. (33)

Combining Inequality (31) and Inequality (33) yields

E(‖θn − θ?‖2) = E(‖θ+
n − θ?‖2) + γ2

nσ
2

≤ 1

1 + 2γnµ
E(‖θn−1 − θ?‖2) + γ2

nσ
2. (34)

The final result of Theorem 3 is obtained through a direct application of Corollary 1 on recursion
(34), by setting yn ≡ E‖θn − θ?‖2, bn ≡ 2γnµ, and an ≡ γ2

nσ
2. The case where γ = 1 only changes

Inequality (29) by replacing
∑
bi with log n.
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Theorem 4. Suppose that Assumptions 1,2, 3(a), 4, and 5 hold, and that (2γ1Jh(θ?) − I) is
positive-definite, where Jh(θ) is the Jacobian of h at θ, and I is the p × p identity matrix. Then,
θn of the stochastic proximal point algorithm of Equation (2) is asymptotically normal:

nγ/2(θn − θ?)→ Np(0,Σ).

The covariance matrix Σ is the unique solution of

(γ1Jh(θ?)− I/2)Σ + Σ(γ1Jh(θ?)− I/2) = Ξ.

A closed-form solution for Σ is possible if Ξ commutes with Jh(θ?), such that ΞJh(θ?) = Jh(θ?)Ξ.
Then, Σ can be derived as Σ = (2γ1Jh(θ?)− I)−1Ξ.

Proof. Convergence of θn → θ? is established from Theorem 1. By definition of the stochastic
proximal point algorithm in Equation (2),

θn = θn−1 − γn(h(θ+
n ) + εn), and (35)

θ+
n + γnh(θ+

n ) = θn−1. (36)

We use Equation (36) and expand h(·) to obtain

h(θ+
n ) = h(θn−1)− γnJh(θn−1)h(θ+

n ) + εn

h(θ+
n ) = (I + γnJh(θn−1))

−1
h(θn−1) + (I + γnJh(θn−1))

−1
εn, (37)

where ‖εn‖ = O(γ2
n) by Theorem 3. By Lipschitz continuity of h(·) (Assumption 3(a)) and the

almost sure convergence of θn to θ?, it follows h(θn−1) = Jh(θ?)(θn−1 − θ?) + o(1), where o(1) is a
vector with vanishing norm. Therefore we can rewrite (37) as follows,

h(θ+
n ) = An(θn−1 − θ?) + O(γ2

n), (38)

such that ‖An − Jh(θ?)‖ → 0, and O(γ2
n) denotes a vector with norm O(γ2

n). Thus, we can rewrite
(35) as

θn − θ? = (I − γnAn)(θn−1 − θ?)− γnεn + O(γ2
n). (39)

The conditions for Fabian’s theorem (Fabian, 1968, Theorem 1) are now satisfied, and so θn − θ?
is asymptotically normal with mean zero, and variance that is given in the statement of Theorem
1 by Fabian (1968).

2. Proofs for approximate implementations

First, we recall our main approximate implementation:

w1 = θn−1,

wk = wk−1 − ak
(
γnH(wk−1, ξk) + wk−1 − w1

)
, 1 < k ≤ K,

θn = wk.

(40)

Note about proofs. The procedures analyzed in this section involve two nested iterative processes.
Throughout, we use n as the index variable of the outer iteration and k for the inner iteration. The
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randomness entering the kth step of the inner iteration inside the nth step of the outer iteration
is denoted by ξnk and Fn,k denotes the σ-algebra generated by {ξji }

1≤j≤n−1
1≤i≤K ∪ {ξni }1≤i≤k. We also

write wnk instead wk in (40) to explicitely keep track of the outer iteration index. Finally, we use
Fn−1 as a shorthand for Fn−1,K .

Let χn(θ) denote the output of the same procedure in the theoretical case where K = ∞. In
other words, χn is the proximal operator that satisfies:

χn(θ) + γnh(χn(θ)) = θ. (41)

Lemma 3. Suppose that Assumptions 2 and 3(c) hold and consider (x, y) ∈ R2
p, two p-component

vectors. Then, for all n = 1, 2, . . .:

(a) χn is a contraction: ‖χn(x)− χn(y)‖ ≤ 1
1+γnµ

‖x− y‖.

(b) ‖χn(x)− x‖ ≤ γnL
1+γnµ

‖x− θ?‖.

Proof. First note that since h(θ?) = 0, θ? is a fixed point of χn.

(a) By definition of χn in Equation (41), one can write:

χn(x)− χn(y) = x− y + γn
[
h
(
χn(y)

)
− h
(
χn(x)

)]
.

Taking the inner product with (χn(x)− χn(y)):

‖χn(x)− χn(y)‖2 = (x− y)>
(
χn(x)− χn(y)

)
− γn

[
h
(
χn(x)

)
− h
(
χn(y)

)]> (
χn(x)− χn(y)

)
.

(42)

Using 3(c), we obtain:

(1 + γnµ)‖χn(x)− χn(y)‖2 ≤ (x− y)>
(
χn(x)− χn(y)

)
,

and we conclude by applying the Cauchy-Schwarz inequality to the right-hand side.

(b) We can write ‖χn(x)− x‖ = γn‖h
(
χn(x)

)
‖ by definition of χn. Because h

(
χn(θ?)

)
= 0:

‖χn(x)− x‖ = γn‖h
(
χn(x)

)
− h
(
χn(θ?)

)
‖

≤ γnL‖χn(x)− χn(θ?)‖ ≤
γnL

1 + γnµ
‖x− θ?‖,

where the first inequality uses Assumption 2 and the second follows from (a).

Lemma 4. Suppose that Assumptions 2, 4 and 3(a) hold. Consider the choice of parameter
ak = an, 1 ≤ k ≤ K in (40) with an ≤ 1

(1+γnL)2 , then:

E
(
‖θn − θ+

n ‖2|Fn−1

)
≤ (1− an)K‖θn−1 − θ+

n ‖2 + σ2γ2
nan.
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Proof. Let us write H(wnk , ξ
n
k+1) = h(wnk ) + εnk+1 and define g(x) = γnh(x) + x − θn−1. We

can write:

‖wnk+1 − θ+
n ‖2 = ‖wnk − an

(
g(wnk ) + γnε

n
k+1

)
− θ+

n ‖2

= ‖wnk − θ+
n ‖2 − 2an

(
g(wnk ) + γnε

n
k+1

)T (
wnk − θ+

n

)
+ a2

n

(
‖g(wnk )‖2 + γ2

n‖εnk+1‖2 + 2g(wnk )T γnε
n
k+1

)
.

Taking expectations on both sides conditioned on Fn,k and noting that E(εk+1|Fn,k) = 0 and
E(‖εk+1‖2|Fn,k) ≤ σ2 by Assumption 4 we get:

E(‖wnk+1 − θ+
n ‖2|Fn,k) ≤ ‖wnk − θ+

n ‖2 − 2ang(wnk )T
(
wnk − θ+

n

)
+ a2

n‖g(wnk )‖2 + a2
nγ

2
nσ

2,

It follows easily from Assumptions 2 and 3(a) that g is (γnL + 1)-Lipschitz continuous and that(
g(x)− g(y)

)>
(x− y) ≥ ‖x− y‖2 for al x and y in Rp. Furthermore, since g(θ+

n ) = 0 by definition:

δnk+1 ≤
[
1− 2an + a2

n(1 + γnL)2
]
δk + a2

nγ
2
nσ

2 .

where we took expectations on both sides conditioned on Fn−1 and write δk = E
(
‖wnk − θ+

n ‖2|Fn−1

)
.

For an ≤ 1
(1+γnL)2 , the above recursion becomes:

δnk+1 ≤ (1− an)δk + a2
nγ

2
nσ

2 .

Note that wnK = θn, and wn1 = θn−1 by definition. Therefore, we obtain:

E
(
‖θn − θ+

n ‖2|Fn−1

)
≤ (1− an)K‖θn−1 − θ+

n ‖2 + σ2γ2
nan

(
1− (1− an)K

)
.

Theorem 5. Suppose that Assumptions 2, 4 and 3(c) hold, then the proximal stochastic fixed
point procedure in Equation (40) with parameters γn = γ and ak = 2a/K, such that e−a < µ/L
and K ≥ 2a(1 + γL)2, satisfies:

E‖θn − θ?‖ ≤ Cn‖θ0 − θ?‖+
γσ
√

2a

(1− C)
√
K

where C = (1 + e−aγL)/(1 + γµ).

Proof. We decompose the distance between θn and θ? as the distance between θn and θ+
n , and

the distance of θ+
n to θ?:

E‖θn − θ?‖ ≤ E‖θn − θ+
n ‖+ E‖θ+

n − θ?‖ [triangle inequality]

= E‖θn − θ+
n ‖+ E‖χn(θn−1)− χn(θ?)‖ [by definition of χn in Equation (41)]

≤ E‖θn − θ+
n ‖+

1

1 + γµ
E‖θn−1 − θ?‖ [by Lemma 3 (a)]

≤ (1− an)K/2E‖θn−1 − χn(θn−1)‖+ σγ
√
an +

1

1 + γµ
E‖θn−1 − θ?‖ [by Lemma 4]

≤ (1− an)K/2γL

1 + γµ
E‖θn−1 − θ?‖+ σγ

√
an +

1

1 + γµ
E‖θn−1 − θ?‖ [by Lemma 3(b)]

=

(
1 + (1− an)K/2γL

1 + γµ

)
E‖θn−1 − θ′n−1‖+ σγ

√
an .
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We now choose an constant of the form 2a
K and obtain the following recursion:

E‖θn − θ?‖ ≤ C · E‖θn−1 − θ?‖+ σγ

√
2a√
K
,

where C is as in the theorem statement. Observe that for our choice of parameter, C < 1. This
recursion solves to:

E‖θn − θ?‖ ≤
γσ
√

2a

(1− C)
√
K

+ Cn‖θ0 − θ?‖ .

2

For completeness, we finally present a variant of the previous procedure, also providing an
approximate implementation of the proximal Robbins–Monro procedure via proximal stochastic
fixed points. Compared to the procedure (40) analyzed in Theorem 5, we now perform an extra
gradient step to compute θn from θn−1 instead of simply using wnK . Formally:

wn1 = θn−1,

wnk = wnk−1 − ak
(
γnH(wnk−1, ξ

n
k ) + wnk−1 − wn1

)
, 1 < k ≤ K,

θn = θn−1 − γnH(wnK , ξ
n
K+1)

(43)

Theorem 6. Suppose that Assumptions 2, 4 and 3(c) hold, then the procedure in Equation (43)
with parameters γn = γ1/n and ak = 2a/K, where a and K are constants satisfying:

e−a ≤ µ

2γ1L2
, K ≥ 3a ·max

{
(1 + γ1L)2, (γ1L)2 + e3a

}
.

Then:

E‖θn − θ?‖2 ≤
e4γ2

1µ
2

nγ1µ
‖θ0 − θ?‖2 + 2γ2

1σ
2e2γ2

1µ
2

eγ1µ · S(n) ,

where:

S(n) ≤


1

γ1µ−1
1
n if γ1µ > 1

log(en)/n if γ1µ = 1
2

1−γ1µ
1

nγ1µ if γ1µ < 1

Proof. We focus on a single iteration n and write H(wnK , ξ
n
K+1) = h(wnK) + εn. We first

decompose the error as usual:

‖θn − θ?‖2 = ‖θn−1 − γnh(wnK)− γnεn − θ?‖2

= ‖θn−1 − γnh(wnK)− θ?‖2 + γ2
n‖εn‖2 − 2γnε

T
n

(
θn−1 − γnh(wnK)− θ?

)
.

Recall that E (εn|Fn,K) = 0 and E
(
‖εn‖2|Fn,K

)
≤ σ2 by Assumption 4. Hence:

E
(
‖θn − θ?‖2|Fn,K

)
≤ ‖θn−1 − γnh(wnK)− θ?‖2 + γ2

nσ
2

= ‖θ+
n + γn

(
h(θ+

n )− h(wnK)
)
− θ?‖2 + γ2

nσ
2

where the equality uses that θn−1 − γnh(θ+
n ) = θ+

n by Eq. (1).
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Next, using that ‖a+ b‖2 ≤ (1 + α)‖a‖2 + (1 + α−1)‖b‖2 for all α > 0 by Young’s inequality:

E
(
‖θn − θ?‖2|Fn,K

)
≤ (1 + α)‖θ+

n − θ?‖2 + γ2
n(1 + α−1)‖h(θ+

n )− h(wnK)‖2 + γ2
nσ

2

≤ 1 + α

(1 + γnµ)2
‖θn−1 − θ?‖2 + (1 + α−1)(γnL)2‖θ+

n − wnK‖2 + γ2
nσ

2

where the second inequality uses Lemma 3 (a) and Assumption 2.
Taking expectations conditioned on Fn−1 and using Lemma 4 (our choice of parameters satisfies

in particular an ≤ 1/(1 + γnL)2 as required by the Lemma):

E
(
‖θn − θ?‖2|Fn−1

)
≤ 1 + α

(1 + γnµ)2
‖θn−1 − θ?‖2 + (1 + α−1)(γnL)2(1− an)K‖θ+

n − θn−1‖2

+ (1 + α−1)(γnL)2γ2
nσ

2an + γ2
nσ

2

≤ 1 + α+ (1 + α−1)(γnL)4(1− an)K

(1 + γnµ)2
‖θn−1 − θ?‖2

+ γ2
nσ

2
[
1 + (1 + α−1)(γnL)2an

]
.

where the second inequality uses Lemma 3 (b).
We now pick α = (γnL)2(1− an)K/2 and take expectations on both sides:

E‖θn − θ?‖2 ≤
(

1 + (γnL)2(1− an)K/2

1 + γnµ

)2

E‖θn−1 − θ?‖2 + γ2
nσ

2

[
1 + (γnL)2an +

an
(1− an)K/2

]
.

Using the inequality exp
(
− nx/(1 − x)

)
≤ (1 − x)n ≤ exp(−nx), it is easy to see that the choice

of parameters in the theorem statement implies:

(1− an)K/2 ≤ e−a, e−a(γnL)2 ≤ γnµ/2, (γnL)2an +
an

(1− an)K/2
≤ 1 ,

hence the previous inequality yields:

E‖θn − θ?‖2 ≤
(

1 + γnµ/2

1 + γnµ

)2

E‖θn−1 − θ?‖2 + 2γ2
nσ

2

≤
(

1− γnµ

(1 + γnµ)2

)
E‖θn−1 − θ?‖2 + 2γ2

nσ
2 .

Writing yn = E‖θn − θ?‖2, an = γnµ/(1 + γnµ)2 and bn = 2γ2
nσ

2, the previous inequality reads
yn ≤ (1− an)yn−1 + bn. Define pn =

∏n
k=1(1− ak), an easy induction gives:

yn ≤ pny0 + pn

n∑
k=1

bk
pk
. (44)

We first focus on getting a lower bound and upper bound on pn. For the lower bound, using
that (1− x) ≥ exp

(
− x/(1− x)

)
, we obtain:

pn ≥ exp

(
−

n∑
k=1

ak

)
exp

(
−

n∑
k=1

a2
k

1− ak

)

≥ exp

(
−

n∑
k=1

γkµ

)
exp

(
−

n∑
k=1

γ2
kµ

2

)
≥ e2γ2

1µ
2−γ1µ

nγ1µ
.
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where the second inequality uses the definition of ak and the last inequality uses that γn = γ1/n an
the series approximations of Lemma 5. Similarly for the upper bound, using that (1−x) ≤ exp(−x):

pn ≤ exp

(
−

n∑
k=1

ak

)
= exp

(
−

n∑
k=1

γkµ

)
exp

(
n∑
k=1

γ2
kµ

2(2 + γkµ)

(1 + γkµ)2

)

≤ exp

(
−

n∑
k=1

γkµ

)
exp

(
n∑
k=1

2γ2
kµ

2

)
≤ e4γ2

1µ
2

(n+ 1)γ1µ
.

Plugging the previous two bounds into (44), we obtain:

yn ≤
e4γ2

1µ
2

nγ1µ
y0 +

2γ2
1σ

2e2γ2
1µ

2

eγ1µ

(n+ 1)γ1µ

n∑
k=1

1

k2−γ1µ
.

Finally, we conclude by defining S(n) = (n+ 1)−γ1µ
∑n
k=1 k

γ1µ−2 and using Lemma 5 to obtain the
upper bounds on S(n) given in the theorem statement depending on the value of γ1µ.

Lemma 5. For any α > 0 and n ≥ 1:

(1 + n)1−α − 1

1− α
≤

n∑
k=1

1

kα
≤ n1−α − α

1− α
and

n1+α

1 + α
≤

n∑
k=1

kα ≤ (n+ 1)1+α − 1

1 + α
,

where the first bound remains true by continuity at α = 1: log(1 + n) ≤
∑n
k=1

1
k ≤ 1 + log n.

Proof. Immediate by approximating the discrete sums from above and below by integrals.

3. Computation of implicit updates

At a first glance, the computation of the implicit procedure,

θn = θn−1 − γnH(θn, ξn),

may appear to be challenging, or even impossible. However, the implementation can actually be
quite straightforward in a variety of popular models and objectives. The general idea is to exploit
a special structure Wθ to simplify the implicit update.

Specifically, suppose that H(θ, ξ) = s(θ)U , where s(θ) ∈ R and U is a vector that does not
depend on the parameter value, θ. Then, we can write the implicit update as follows:

θn = θn−1 − γns(θn)Un = θn−1 − ηUn,

for some scalar η. Thus, we have to solve:

γns(θn) = η ⇔ γns(θn−1 − ηUn) = η.

The problem is now reduced to a one-dimensional fixed-point equation for ξ. In many statistical
models, including generalized linear models and M-estimation, this fixed point can be efficiently
solved through line search due to the structure of s. For instance, Algorithm 1 of Toulis et al.
(2014) provides a concrete algorithm for generalized linear models.
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