
Accompanying code for

“The Proximal Robbins–Monro Method”

This document describes the code accompanying “The Proximal Robbins–Monro Method” paper. Three R
script files are necessary: Fig1 2.R and Fig 3.R, and lib.R, and they can be used to reproduce all the figures in
the paper.

Figure 1 (Fig1 2.R)

The three stochastic procedures for Figures 1 and 2 are implemented through the sgd, isgd, sfp functions in
Fig1 2.R for either the normal model (Section 5.1 of main paper) or the Poisson model (Section 5.2). For instance,
to run SGD on normal data using a learning rate γ1 = 10 we can run the following code:

> source("Fig1_2.R")

> Data = gen_data("normal")

> out = sgd(Data, gamma1=10, verbose=FALSE)

> out

mean_level max avg last

(Intercept) -1.877628 14.72283 -1.866649 -2.215374

The results show log(MSE) for the SGD iterates; max refers to the maximum log(MSE) over all iterates; avg refers
to their average value; last refers to the log(MSE) of the last SGD iterate.

To run ISGD in the same setting:

> out = isgd(Data, gamma1=10, verbose=FALSE)

> out

mean_level max avg last

(Intercept) -1.918245 0.6037228 -1.903004 -1.994473

To run the stochastic fixed point algorithm (SFP) of Eq. (16) in the same setting:

> out = sfp(Data, gamma1=10, verbose=FALSE)

> out

mean_level max avg last

(Intercept) -1.533026 -0.9272963 -1.506299 -1.772039

We can see that all methods are comparable with respect to average log(MSE). However, standard SGD has
clearly the largest max log(MSE), indicating that it is less robust than the other methods.

To generate the full version of Figure 1 (in the paper) is computationally intensive. So, we can generate a
simplified version of Figure 1 through the following code:

> run_experiment(num_gamma=5, nreps=10) # this saves a .rda file locally.

> g1 = results_boxplot(whatval="mean_level")

> g2 = results_boxplot(whatval="max")

> multiplot(g1, g2)

In a conventional laptop this will take between 1-2 minutes of wall clock time. The output is shown in the figure
below. To fully reproduce the experiment in Figure 1 of the main paper we just need to scale up the above code:

> run_experiment(num_gamma=20, nreps=50)

The execution could be done in a super computing cluster, since the experiments are independent across the learning
rates γ1.

1



−2

−1

0

1

0.1 6.3 12.5 18.8 25
learning rate (γ1)

lo
g(

M
S

E
) method

isgd
sfp
sgd

0

10

20

30

0.1 6.3 12.5 18.8 25
learning rate (γ1)

lo
g(

M
S

E
) method

isgd
sfp
sgd

Figure 1: Output from simplified experiment with normal data, as described above. The resulting figure is a
simplified version of Figure 1 in the main paper.

2



Figure 2 (Fig1 2.R)

To run SGD on Poisson data using a learning rate γ1 = 1 we can run the following code:

> Data = gen_data("poisson")

> out = sgd(Data, gamma1=1, verbose=FALSE)

> out

mean_level max avg last

(Intercept) -0.4701483 0.4659749 -0.4706964 -0.4621388

To run ISGD in the same setting:

> out = isgd(Data, gamma1=1, verbose=FALSE)

> out

mean_level max avg last

(Intercept) -3.031638 -0.2779868 -2.899444 -3.349216

To run SFP in the same setting:

> out = sfp(Data, gamma1=1, verbose=FALSE)

> out

mean_level max avg last

(Intercept) -0.4735927 -0.2147034 -0.4832646 -0.4648346

We can see that all methods are comparable with respect to average log(MSE), with ISGD being slightly better
overall. However, standard SGD will perform much worse as we increase the learning rate.

To get a simplified version of Figure 2 (in the paper) we can execute the following code:

> run_experiment(model="poisson", num_gamma=5, max_gamma1=5, nreps=10)

> g1 = results_boxplot(model="poisson", whatval="mean_level")

> g2 = results_boxplot(model="poisson", whatval="max")

> multiplot(g1, g2)

In a conventional laptop this will take between 3-4 minutes of wall clock time. The output is shown in the figure
below. To fully reproduce the experiment in Figure 2 of the main paper we just need to scale up the above code:

> run_experiment(model="poisson", num_gamma=20, max_gamma1=5, nreps=50)

As in the normal model, this could be done in a super computing cluster.

3



0

20

40

60

80

0.1 1.3 2.6 3.8 5
learning rate (γ1)

lo
g(

M
S

E
) method

isgd
sfp
sgd

0

20

40

60

80

0.1 1.3 2.6 3.8 5
learning rate (γ1)

lo
g(

M
S

E
) method

isgd
sfp
sgd

Figure 2: Output from simplified experiment with Poisson data, as described above. The results are similar to
Figure 2 of main paper.

4



Figure 3

To reproduce Figure 3 we first have to generate the results through the following command:

> total_experiment(nreps=100)

The total execution time for the entire experiment is about 20 minutes of wall clock time. The results will be saved
in a file “QuantileRegression.rda”. The results can then be loaded and plotted through the command:

> gen_Fig3()

This will reproduce Figure 3 in the main paper.

5


