RANDOM GRAPH MODEL OF Multi-hospital Kidney Exchanges

Panos Toulis ptoulis@fas.harvard.edu Harvard University, Dept. of Statistics

Joint work with David C. Parkes (SEAS, Harvard)

CIREQ Matching Conference, Montreal, 2014

INTRODUCTION

DESIGN GOAL

Assume *m* hospitals indexed by *h*, each with *n* patient/donor pairs embedded in a directed *compatibility graph* G_h . We seek to design a *kidney exchange mechanism* \mathcal{M} , that selects a set of *cycles* out of the combined set of *reported graphs* $\bigcup_h G'_h$.

> Find \mathcal{M} , computing $\mathcal{M}(\bigcup_{h} G'_{h}) = \{cycles\}$ subject to, efficiency($\{cycles\}\)$ & incentives(\mathcal{M})

INTRODUCTION

OVERVIEW OF RESULTS

- Focusing on a single graph G_h , we derive a formula for the expected #matches in a maximum 2-cycle matching and show this is given by a formula $\gamma n \beta \sqrt{n} 2$.
- The "benefit from pooling" *m* hospitals of size *n* is thus shown to be $\propto (m \sqrt{m})\sqrt{n}$.
- We design a mechanism that is efficient and EPIC with hospitals revealing all pairs $(G'_h = G_h)$ for moderately-sized hospitals.
- We perform extensive simulation studies using the xCM and the Bonus mechanisms (Ashlagi & Roth, 2013), and demonstrate significant advantages in efficiency and incentives of xCM.
- We develop and provide our source code written in R through Github; experimental results are fully reproducible.

SINGLE-HOSPITAL SETTING

NOTATION

- We write (P, D) to denote a pair where patient has blood-type P and donor has blood-type D e.g., (A, B), (O, AB) and so on. We assume only 4 blood-types, namely O, A, B, AB.
- We write $(P_1, D_1) \rightarrow (P_2, D_2)$ to denote that the donor of pair #1 can donate to the patient of pair #2.
- The patient-donor list of a single hospital h can be represented as a *compatilibity graph* G(V, E) where
 - $V = \{(P_h, D_h)\} = \text{patient-donor pairs set.}$
 - $E = (e_{ij}) = \text{compatilibity relationships among pair such that,}$ $e_{ij} = 1 \Leftrightarrow (P_i, D_i) \rightarrow (P_j, D_j)$
- For the most part of this talk, we focus on 2-way exchanges (also called matchings). We write, $(P_1, D_1) \leftrightarrow (P_2, D_2)$ to denote that the two pairs can exchange kidney transplants.
- We will extend to 3-way exchanges at the end of this talk.

SINGLE-HOSPITAL SETTING

RANDOM-GRAPH GENERATIVE MODEL

Blood-types in pairs are random; so are the compatibilities (edges). Let $\widetilde{G_n}$ denote the random compatibility graph; we assume the following generative process:

- Start with an empty set.
- Sample one pair donor/patient and their blood types.¹
- · Add pair to the collection, if
 - Donor/patient are blood-type incompatible (deterministic test).
 OR
 - Donor/patient are blood-type compatible but tissue-type incompatible (random test with success probability $1 p_c$).²
- **REPEAT** until *n* pairs have been collected.

¹e.g. 50% O, 30% A, 15% B, 5% AB (tunable parameters)

 $^{^{2}}p_{c}$ = "cross-match" probability that patient rejects the transplant from a random donor (e.g. 20%); we also test on a "non-uniform" model where p_{c} describes the patient's *sensitivity*.

SINGLE-HOSPITAL SETTING STRUCTURAL PROPERTIES OF $\widetilde{G_n}$

- Four different "types" of pairs in the compatibility graph (Ünver, 2010).
- Over-demanded pairs (OD) are more central in the graph, but less frequent ($\sim 10\%$).
- Under-demanded pairs (UD) are the most frequent (> 50%); can only donate to OD pairs; hardest to match.
- *Self-demanded* pairs (S) form disconnected components. Internal 2-way matches within the components are possible.
- Reciprocal pairs (R) form a bipartite graph. Strategic issues in kidney exchanges are mainly due to such pairs, since a large number $(\propto \sqrt{n})$ remains (internally) unmatched.

FIGURE : Sample of a compatibility graph w/60 pairs.

Multi-hospital setting

BENEFIT FROM POOLING; THE "SQUARE-ROOT LAW"

- A regular matching contains only (2-way) matches of the form (OD ↔ UD), (S ↔ S) and (R ↔ R). When it exists, it is maximum (Roth et. al., 2004).
- We can show that a regular matching exists with high probability; then

$$\#\text{unmatched} = \underbrace{(\#\text{OD-UD})}_{\propto n} + \underbrace{(\#\text{surplus } \mathsf{R})}_{\propto \sqrt{n}} + \underbrace{(\#\text{surplus } \mathsf{S})}_{\propto \mathcal{O}(1)}$$

• Thus, if $\mu(n) = \#$ expected matches,

$$\mu(n) = \gamma n - \beta \sqrt{n} - 2$$

Square-root law. Assume *m* hospitals of the same size *n*: Pooling benefit = $\mu(mn) - m\mu(n) \propto (m - \sqrt{m})\sqrt{n}$

Multiple-hospital setting

INCENTIVES: OVERVIEW OF ASSUMPTIONS

- To study incentives we assume an economy of *m* hospitals, with the **same** (moderate) patient/donor list size *n*.
- A hospital manipulates by hiding pairs only. Edges cannot be misreported (compatibility can be verified through medical tests).
- For our analysis, we assume that the combined graph of (m-1) hospital graphs satisfy certain *perfect-matching* assumptions:
 - **R-perfect**: In balanced subgraph of an unbalanced R-subgraph, can be perfectly matched.
 - **S-perfect**: Any component in the S-subgraph (e.g. (A, A) pairs) can match all but one pairs.
- We also assume that every hospital is
 - **OD/UD-perfect**: All **OD** pairs can be matched with UD pairs.
- Analysis conditioned on aforementioned properties. We study EPIC, not DSIC.

MECHANISM DESIGN: THE **XCM** MECHANISM 2-WAY EXCHANGES

The xCM mechanism works as follows:

- STEP 1. (Match S pairs) Match pooled S-pairs internally such that each hospital h matches at least as many as it can match internally.
- STEP 2. (Match R pairs) Match the *short side* of the pooled R-subgraph to the long-side under the *probabilistic uniform rule* (Ehlers & Klaus, 2003).³ Each hospital matches *at least* as many as it can match internally.
- STEP 3. (Match remaining pairs locally) Enforce an *almost-regular* matching internally for each hospital, with all pairs that remain.
 - INP 4. (Match remaining pairs globally) Compute a random, almost-regular matching on the combined graph formed from all remaining unmatched pairs in the pool.

³The rule allocates +1 to all agents as long as the supply is larger than the #agents "in-demand"; it then allocates the remainder uniformly at-random.

MECHANISM DESIGN: THE **xCM** MECHANISM Incentives and efficiency

Theorem 1. The *xCM* mechanism is EPIC and 2-way efficient⁴ for properties (i) *S*-perfect and *R*-perfect on compatibility graphs the size of every marginal economy and larger, and (ii) OD/UD-perfect on every hospital's compatibility graph.

- Efficiency follows because xCM computes an overall matching that is regular, and thus maximum on the combined S- and R-subgraphs, and matches every OD pair to a UD pair.
- The OD/UD-perfect property holds for virtually any graph at 2% error (i.e., 2% OD pairs remain unmatched on average in regular matchings).
- The R-,S-perfect assumptions for the marginal economies hold at 2% for m = 4 hospitals, at $n \ge 25$.

⁴i.e., efficient allowing only 2-way matches

$\operatorname{Mechanism}$ design: ${\tt xCM}$ and ${\tt Bonus}$

The Bonus mechanism (Ashlagi & Roth, 2013) focuses on the OD-UD subgraph and employs a lottery to allocate the "OD supply".

operation	xCM	Bonus		
match S pairs	maximum matching ⁵	maximum matching		
match 5 pairs	under IR constraints			
match P pairs	uniform probabilistic rule	maximum matching		
	under IR constraints	under IR constraints		
match OD/UD pairs	almost-regular matching	OD/UD lottery		

⁵Both mechanisms make extensive use of *uniformly-random* maximum matchings.

MATCHING ON R SUBGRAPH (BIPARTITE CASE)

- Assume 3 hospitals (different colors in figure) sharing only R pairs. Their goal is to maximize individual #matches.
- Assume any pair from one side can be matched to any other pair from the other side (stronger assumption than "R-perfect").
- If we just pick a random maximum then, by symmetry, H₃ will match

6 ~ $\times \underbrace{5/(5+4)}_{}$

all short-side pairs

short-side supply

relative proportion in long-side

By perfect-matching, a strategy can be represented by (x, y) where x, y are the #pairs reported in each side.

Matching on ${\bf R}$ subgraph: Numerical example

- Assume three hospitals with reports, $H_1(25, 10)$, $H_2(20, 50)$ and $H_3(15, 30)$
 - each node in figure = 5 pairs.
- Consider 3 mechanisms:
 - random max matching (rCM)
 - match internally \rightarrow random max matching (IR+rCM)
 - uniform probabilistic rule (uniform)
- Also consider 3 strategies
 - truthful : share all nodes from each side
 - canonical : match internally, report remainder
 - "long-R": report the entire long side only

Matching on \mathbb{R} subgraph: Numerical example

- $H_1(25, 10)$, $H_2(20, 50)$ and $H_3(15, 30)$
- Assume H_1 , H_2 are truthful and H_3 is being strategic. Then the expected utilities for H_3 are given by the table below

strategy	mechanism				
	rCM	IR+rCM	uniform		
truthful	35	35	37.5		
canonical	39	35	37.5		
long-R	45	37.5	37.5		

MATCHING ON R SUBGRAPH: NUMERICAL EXAMPLE

- $H_1(25, 10), H_2(20, 50)$ and $H_3(15, 30)$
- Assume H_1, H_2 are truthful and H_3 is being strategic. Then the expected utilities are given by the table below

strategy	mechanism				
	rCM	IR+rCM	uniform		
truthful	35	35	37.5		
canonical	39	35	37.5		
long-R	45	37.5	37.5		

• For example, (rCM + canonical):

$$2 \cdot 15$$

internal matches
relative prop. in long-side
 $\times (20 + 25)$
short side
 $\times (20 + 25)$

Matching on \mathbb{R} subgraph: Numerical example

- $H_1(25, 10)$, $H_2(20, 50)$ and $H_3(15, 30)$
- Assume H_1, H_2 are truthful and H_3 is being strategic. Then the expected utilities are given by the table below

strategy	mechanism				
	rCM	IR+rCM	uniform		
truthful	35	35	37.5		
canonical	39	35	37.5		
long-R	45	37.5	37.5		

1

MATCHING ON OD/UD SUBGRAPH: NUMERICAL EXAMPLE

- Bonus splits hospitals in two groups, S_1 and S_2 . Hospital h (in S_2) has 1 OD and 2 UD pairs. Same-side hospitals have 4 UD pairs. The 6 UD pairs in S_2 are to be matched with 2 OD pairs from S_1 .
- Goal: Allocate the 2 OD pairs to the 6 UD pairs.

MATCHING ON OD/UD SUBGRAPH: NUMERICAL EXAMPLE

MATCHING ON OD/UD SUBGRAPH: NUMERICAL EXAMPLE

EXTENSION TO 3-WAY EXCHANGES: 3-xCM

- One key idea is to define virtual-R pairs as $(A, O) \rightarrow (O, B) \equiv$ "virtual A-B" pair $(B, O) \rightarrow (O, A) \equiv$ "virtual B-A" pair
- The virtual-R pairs are important in clearing out the imbalance in the R subgraph and thus in achieving full efficiency (asymptotically) in 3-way exchanges.
- Another 3-cycle of interest from a welfare perspective involves 1 (OD) and 2 UD pairs. Such cycles are explicitly explored by 3-xCM but they are, generally, less frequent in practice.

EXPERIMENTS

INCENTIVES: 2-WAY EXCHANGES

mech.	profile	strategy	avg.utility	#OD	#R	#S	#UD
	tttttt	t	5.90 (0.03)	1629	2088	1778	1584
rrC™	tttttc	с	6.68 (0.06)	1604	2267	1802	2347
I GH	tccccc	t	4.54 (0.05)	1492	1656	1476	371
	cccccc	с	5.57 (0.03)	1462	1878	1580	1201
xCM	tttttt	t	5.85 (0.03)	1618	2125	1811	1458
	tttttc	с	5.81 (0.06)	1600	2137	1765	1468
	tccccc	t	5.59 (0.07)	1485	1840	1582	1246
	cccccc	с	5.57 (0.03)	1457	1879	1583	1201
	tttttt	t	5.67 (0.03)	1537	2081	1778	1410
Bonus	tttttc	с	6.19 (0.06)	1571	1994	1784	2075
	tccccc	t	4.75 (0.06)	1405	1889	1511	424
	cccccc	с	5.50 (0.03)	1428	1870	1574	1179

TABLE : 2-cycles, with m = 6, and n = 12.

- Random maximum-matching (rCM) is not BNIC. Canonical deviation (hiding all possible internal matches) yields 6.68 matches vs. 5.9 when truthful.
- The canonical deviation is not useful in xCM. This is consistent with the EPIC theoretical property.
- The Bonus mechanism is not BNIC. Canonical deviation yields 6.19 vs 5.67 when truthful. The lottery seems to hurt matches of #R and UD pairs, as theoretically expected.

Experiments

INCENTIVES: SUMMARY

	(m,n) = (#hospitals, #size each.)					
mechanism	(4, 18)	(6, 12)	(12, 6)			
rCM	1.148 (0.007)	1.133 (0.008)	1.141 (0.014)			
3-rCM	1.124 (0.008)	1.113 (0.011)	1.090 (0.013)			
xCM	0.995 (0.008)	0.994 (0.009)	1.021 (0.015)			
3-xCM	1.022 (0.010)	1.018 (0.013)	0.997 (0.015)			
Bonus	1.116 (0.008)	1.091 (0.009)	1.091 (0.015)			
3-Bonus	1.158 (0.011)	1.131 (0.014)	1.058 (0.016)			

TABLE . The average ratio of the utility to a hospital from deviating to the canonical strategy compared to the utility for truthful reporting.

• Neither rCM nor Bonus are BNIC for (m, n)-combination (hospital, size).

 The canonical deviation is not useful in xCM but may be marginally useful in 3-xCM. The incentives of xCM-* mechanisms are better even in environments where the perfect-matching properties do not hold precisely.

Experiments

Welfare: 3-way exchanges

mechanism	welfare	00?	O[RS]	ORU	OSU	OUU	RRS	SSS
no pooling	29.73 (0.24)	153	572	1205	1479	81	573	369
max matching	39.51 (0.23)	1	50	1694	93	428	1686	1073
3-rCM-all-c	35.40 (0.20)	164	480	1203	1623	83	1055	505
		0	3.54	2.74	0.92	0	46.16	27.52
3-xCM-all-t	37.56 (0.22)	299	20	2408	200	170	0	1263
		100	100	100	100	100		100
3-Bonus-all-c	34.62 (0.20)	175	478	1167	1586	82	568	515
		1.14	0	0	0	0	0	28.93

- There is significant benefit from pooling (compare "no-pooling" with "max-matching").
- Main inefficiency of 3-xCM relative to max-matching, because of fewer UD and S pairs matched.
- Inefficiency of Bonus due to insufficient use of R pairs (for example, compare ORU matches in 3-xCM and Bonus).

Source code

- Source code and experiments fully available online: https://github.com/ptoulis/kidney-exchange
- IP solver powered by commercial Gurobi which is available for free with an academic license⁶
- · Written in R, easy-to-use/extend, statistical tools readily available

```
> pool = rrke.pool(m=4, n=60, uniform.pra=T)
> kpd = kpd.create(pool, strategy.str="ttc", include.3way=T)
> out = Run.Mechanism(kpd, "xCM", include.3way=T)
> get.matching.utility(out)
[1] 58
> out$information
 info2 00 info2 0B info2 0S info2 0U info2 BB info2 BS
                                                       info2 RU
                                                                 info2_SS
                0
                         0
                                           3
                                                     0
 info2.SU info2.UU info3.000 info3.00R info3.00S info3.00U info3.0RR info3.0RS
       0
                0
                         0
                                  0
                                           0
                                                     0
                                                              0
                                                                       0
info3.ORU info3.OSS info3.OSU info3.OUU info3.RRR info3.RRS info3.RRU info3.RSS
       3
                0
                         0
                                           0
                                                     0
                                                              0
                                                                       0
info3.RSU info3.RUU info3.SSS info3.SSU info3.SUU info3.UUU
                                                          n2way
                                                                   n3way
                                           0
                0
                                                     0
                                                                       8
```

⁶http://www.gurobi.com/products/licensing-and-pricing/academic-licensing

CONCLUSIONS

- We apply random graph theory to quantify the statistical properties of kidney exchange graphs; pooling benefits sublinear to #hospitals $(m \sqrt{m})$ and proportional to square-root of hospital size $(\propto \sqrt{n})$.
- We design a mechanism, namely xCM, to address incentives issues in multi-hospital kidney exchanges (e.g. hospital hiding pairs) in a static context.
- Our mechanism is efficient and EPIC under perfect-matching assumptions that are validated for moderately-sized hospitals (\sim 30 pairs/hospital) and a "uniform-PRA" model (uniform crossmatch probability), and several blood-type distributions.
- In particular, our mechanism fares better compared to the Bonus mechanism (Ashlagi & Roth, 2013), which is shown to be vulnerable to deviations.
- We publicly release a code-base which can be used for reproducibility and further research on the domain.

THANK YOU