Random Graph Model of
 Multi-hospital Kidney Exchanges

Panos Toulis
ptoulis@fas.harvard.edu Harvard University, Dept. of Statistics

Joint work with David C. Parkes (SEAS, Harvard)

CIREQ Matching Conference, Montreal, 2014

Introduction

Design goal

Assume m hospitals indexed by h, each with n patient/donor pairs embedded in a directed compatibility graph G_{h}. We seek to design a kidney exchange mechanism \mathcal{M}, that selects a set of cycles out of the combined set of reported graphs $\bigcup_{h} G_{h}^{\prime}$.

Find \mathcal{M}, computing $\mathcal{M}\left(\bigcup_{h} G_{h}^{\prime}\right)=\{$ cycles $\}$
subject to, efficiency(\{cycles\}) \& incentives(\mathcal{M})

Introduction

- Focusing on a single graph G_{h}, we derive a formula for the expected \#matches in a maximum 2-cycle matching and show this is given by a formula $\gamma n-\beta \sqrt{n}-2$.
- The "benefit from pooling" m hospitals of size n is thus shown to be $\propto(m-\sqrt{m}) \sqrt{n}$.
- We design a mechanism that is efficient and EPIC with hospitals revealing all pairs $\left(G_{h}^{\prime}=G_{h}\right)$ for moderately-sized hospitals.
- We perform extensive simulation studies using the xCM and the Bonus mechanisms (Ashlagi \& Roth, 2013), and demonstrate significant advantages in efficiency and incentives of xCM.
- We develop and provide our source code written in R through Github; experimental results are fully reproducible.

Single-hospital setting

Notation

- We write (P, D) to denote a pair where patient has blood-type P and donor has blood-type D e.g., (A, B), (O, AB) and so on. We assume only 4 blood-types, namely $O, A, B, A B$.
- We write $\left(P_{1}, D_{1}\right) \rightarrow\left(P_{2}, D_{2}\right)$ to denote that the donor of pair \#1 can donate to the patient of pair \#2.
- The patient-donor list of a single hospital h can be represented as a compatilibity graph $G(V, E)$ where
- $V=\left\{\left(P_{h}, D_{h}\right)\right\}=$ patient-donor pairs set.
- $E=\left(e_{i j}\right)=$ compatilibity relationships among pair such that,

$$
e_{i j}=1 \Leftrightarrow\left(P_{i}, D_{i}\right) \rightarrow\left(P_{j}, D_{j}\right)
$$

- For the most part of this talk, we focus on 2-way exchanges (also called matchings). We write, $\left(\mathrm{P}_{1}, \mathrm{D}_{1}\right) \leftrightarrow\left(\mathrm{P}_{2}, \mathrm{D}_{2}\right)$ to denote that the two pairs can exchange kidney transplants.
- We will extend to 3-way exchanges at the end of this talk.

Single-hospital setting

Random-GRAPH GENERATIVE MODEL

Blood-types in pairs are random; so are the compatibilities (edges). Let \widetilde{G}_{n} denote the random compatibility graph; we assume the following generative process:

- Start with an empty set.
- Sample one pair donor/patient and their blood types. ${ }^{1}$
- Add pair to the collection, if
- Donor/patient are blood-type incompatible (deterministic test). OR
- Donor/patient are blood-type compatible but tissue-type incompatible (random test with success probability $1-p_{c}$). ${ }^{2}$
- REPEAT until n pairs have been collected.

[^0]
Single-hospital setting

Structural properties of $\widetilde{G_{n}}$

- Four different "types" of pairs in the compatibility graph (Ünver, 2010).
- Over-demanded pairs (OD) are more central in the graph, but less frequent ($\sim 10 \%$).
- Under-demanded pairs (UD) are the most frequent ($>50 \%$); can only donate to OD pairs; hardest to match.
- Self-demanded pairs (S) form disconnected components. Internal 2-way matches within the components are possible.
- Reciprocal pairs (R) form a bipartite graph. Strategic issues in kidney exchanges are mainly due to such pairs, since a large number ($\propto \sqrt{n}$) remains (internally) unmatched.

Sample of a compatilbility graph w/ 60 pairs.

Multi-Hospital setting

Benefit from pooling; THE "square-root law"

- A regular matching contains only (2-way) matches of the form (OD $\leftrightarrow \mathrm{UD}),(\mathrm{S} \leftrightarrow S)$ and $(R \leftrightarrow R)$. When it exists, it is maximum (Roth et. al., 2004).
- We can show that a regular matching exists with high probability; then

$$
\text { \#unmatched }=\underbrace{(\# \text { OD-UD })}_{\propto n}+\underbrace{(\# \text { surplus R) })}_{\propto \sqrt{n}}+\underbrace{(\# \text { surplus S) })}_{\alpha O(1)}
$$

- Thus, if $\mu(n)=\#$ expected matches,

$$
\mu(n)=\gamma n-\beta \sqrt{n}-2
$$

- Square-root law. Assume m hospitals of the same size n :

$$
\text { Pooling benefit }=\mu(m n)-m \mu(n) \propto(m-\sqrt{m}) \sqrt{n}
$$

Multiple-hospital setting

Incentives: OVERVIEW of ASSUMPTIONS

- To study incentives we assume an economy of m hospitals, with the same (moderate) patient/donor list size n.
- A hospital manipulates by hiding pairs only. Edges cannot be misreported (compatibility can be verified through medical tests).
- For our analysis, we assume that the combined graph of $(m-1)$ hospital graphs satisfy certain perfect-matching assumptions:
- R-perfect: In balanced subgraph of an unbalanced R-subgraph, can be perfectly matched.
- S-perfect: Any component in the S-subgraph (e.g. (A, A) pairs) can match all but one pairs.
- We also assume that every hospital is
- OD/UD-perfect: All OD pairs can be matched with UD pairs.
- Analysis conditioned on aforementioned properties. We study EPIC, not DSIC.

Mechanism design: The xCM mechanism

2-WAY EXCHANGES

The xCM mechanism works as follows:
(Match S pairs) Match pooled S-pairs internally such that each hospital h matches at least as many as it can match internally.
(Match R pairs) Match the short side of the pooled R-subgraph to the long-side under the probabilistic uniform rule (Ehlers \& Klaus, 2003). ${ }^{3}$ Each hospital matches at least as many as it can match internally. (Match remaining pairs locally) Enforce an almost-regular matching internally for each hospital, with all pairs that remain.
(Match remaining pairs globally) Compute a random, almost-regular matching on the combined graph formed from all remaining unmatched pairs in the pool.

[^1]
Mechanism design: The xCM mechanism

INCENTIVES AND EFFICIENCY

Theorem 1. The $x C M$ mechanism is EPIC and 2-way efficient ${ }^{4}$ for properties (i) S-perfect and R-perfect on compatibility graphs the size of every marginal economy and larger, and (ii) OD/UD-perfect on every hospital's compatibility graph.

- Efficiency follows because xCM computes an overall matching that is regular, and thus maximum on the combined S- and R-subgraphs, and matches every OD pair to a UD pair.
- The OD/UD-perfect property holds for virtually any graph at 2% error (i.e., 2% OD pairs remain unmatched on average in regular matchings).
- The R-,S-perfect assumptions for the marginal economies hold at 2% for $m=4$ hospitals, at $n \geq 25$.

[^2]
Mechanism design: xCM and Bonus

The Bonus mechanism (Ashlagi \& Roth, 2013) focuses on the OD-UD subgraph and employs a lottery to allocate the "OD supply".

operation	xCM	Bonus
match S pairs	maximum matching ${ }^{5}$ under IR constraints	maximum matching
match R pairs	uniform probabilistic rule under IR constraints	maximum matching under IR constraints
match OD/UD pairs	almost-regular matching	OD/UD lottery

[^3]
GAME@FNODES

Game of Nodes

Matching on R subgraph (bipartite case)

- Assume 3 hospitals (different colors in figure) sharing only R pairs. Their goal is to maximize individual \#matches.
- Assume any pair from one side can be matched to any other pair from the other side (stronger assumption than "R-perfect").
- If we just pick a random maximum then, by symmetry, H_{3} will match

- By perfect-matching, a strategy can be represented by (x, y) where x, y are the \#pairs reported in each side.

Game of Nodes

Matching on R subgraph: Numerical example

- Assume three hospitals with reports, $H_{1}(25,10), H_{2}(20,50)$ and $H_{3}(15,30)$
- each node in figure $=5$ pairs.
- Consider 3 mechanisms:
- random max matching (rCM)
- match internally \rightarrow random max matching (IR+rCM)
- uniform probabilistic rule (uniform)
- Also consider 3 strategies
- truthful : share all nodes from each side
- canonical : match internally, report remainder
- "long-R" : report the entire long side only

Game of Nodes

Matching on R subgraph: Numerical example

- $H_{1}(25,10), H_{2}(20,50)$ and $H_{3}(15,30)$
- Assume H_{1}, H_{2} are truthful and H_{3} is being strategic. Then the expected utilities for H_{3} are given by the table below

strategy	mechanism		
	rCM	IR + rCM	uniform
truthful	35	35	37.5
canonical	39	35	37.5
long-R	45	37.5	37.5

Game of Nodes

Matching on R subgraph: Numerical example

- $H_{1}(25,10), H_{2}(20,50)$ and $H_{3}(15,30)$
- Assume H_{1}, H_{2} are truthful and H_{3} is being strategic. Then the expected utilities are given by the table below

strategy	mechanism		
	$r C M$	$I R+r C M$	uniform
truthful	35	35	37.5
canonical	39	35	37.5
long-R	45	37.5	37.5

Game of Nodes

Matching on R subgraph: Numerical example

- $H_{1}(25,10), H_{2}(20,50)$ and $H_{3}(15,30)$
- Assume H_{1}, H_{2} are truthful and H_{3} is being strategic. Then the expected utilities are given by the table

- For example, (IR +rCM and "long-R") equiv. to $H_{1}(15,0), H_{2}(0,30)$ and $H_{3}(0,30)$:

Game of Nodes
Matching on OD/UD subgraph: Numerical example

- Bonus splits hospitals in two groups, S_{1} and S_{2}. Hospital h (in S_{2}) has 1 OD and 2 UD pairs. Same-side hospitals have 4 UD pairs. The 6 UD pairs in S_{2} are to be matched with 2 OD pairs from S_{1}.
- Goal: Allocate the 2 OD pairs to the 6 UD pairs.

\}
OD pairs from hospital set S_{1}

UD pairs from hospital set $S_{2} \backslash\{h\}$

(O-A

Pairs of hospital h.

Game of Nodes
Matching on OD/UD subgraph: Numerical example

- Case 1 (h truthful). Bonus preallocates a match. Probability of matching the other is $2 / 6$ (not $1 / 5$), so overall utility $\underbrace{1}_{O D \text { "easy-to-match" }}+\underbrace{1}_{\text {UD preallocated }}+\underbrace{2 / 6}_{\text {lottery }}=35 / 15$.

Game of Nodes

Matching on OD/UD subgraph: Numerical example

- Case 2 (h deviates). Probability of matching the other is $2 / 5$, so overall utility is
$\underbrace{2}_{\text {internal }}+\underbrace{2 / 5}_{\text {lottery }}=36 / 15>\underbrace{35 / 15}_{\text {truthful }}$.

\} OD pairs from hospital set S_{1}

UD pairs from hospital set $S_{2} \backslash\{h\}$

Extension to 3-WAY ExCHANGES: $3-\mathrm{xCM}$

- One key idea is to define virtual-R pairs as $(A, O) \rightarrow(O, B) \equiv "$ virtual A-B" pair $(\mathrm{B}, \mathrm{O}) \rightarrow(\mathrm{O}, \mathrm{A}) \equiv$ "virtual B-A" pair
- The virtual-R pairs are important in clearing out the imbalance in the R subgraph and thus in achieving full efficiency (asymptotically) in 3-way exchanges.
- Another 3-cycle of interest from a welfare perspective involves 1 (OD) and 2 UD pairs. Such cycles are explicitly explored by $3-\mathrm{xCM}$ but they are, generally, less frequent in practice.

Experiments

INCENTIVES: 2-WAY EXCHANGES

mech.	profile	strategy	avg.utility	\#OD	\#R	\#S	\#UD
rCM	tttttt	t	$5.90(0.03)$	1629	2088	1778	1584
	tttttc	c	$6.68(0.06)$	1604	2267	1802	2347
	tccccc	t	$4.54(0.05)$	1492	1656	1476	371
	cccccc	c	$5.57(0.03)$	1462	1878	1580	1201
xCM	tttttt	t	$5.85(0.03)$	1618	2125	1811	1458
	tttttc	c	$5.81(0.06)$	1600	2137	1765	1468
	tccccc	t	$5.59(0.07)$	1485	1840	1582	1246
	cccccc	c	$5.57(0.03)$	1457	1879	1583	1201
Bonus	tttttt	t	$5.67(0.03)$	1537	2081	1778	1410
	tttttc	c	$6.19(0.06)$	1571	1994	1784	2075
	tccccc	t	$4.75(0.06)$	1405	1889	1511	424
	cccccc	c	$5.50(0.03)$	1428	1870	1574	1179

$$
\text { 2-cycles, with } m=6 \text {, and } n=12 \text {. }
$$

- Random maximum-matching (rCM) is not BNIC. Canonical deviation (hiding all possible internal matches) yields 6.68 matches vs. 5.9 when truthful.
- The canonical deviation is not useful in xCM. This is consistent with the EPIC theoretical property.
- The Bonus mechanism is not BNIC. Canonical deviation yields 6.19 vs 5.67 when truthful. The lottery seems to hurt matches of \#R and UD pairs, as theoretically expected.

Experiments

Incentives: SUMMARY

	$(m, n)=(\#$ hospitals, \#size each.)		
mechanism	$(4,18)$	$(6,12)$	$(12,6)$
rCM	$1.148(0.007)$	$1.133(0.008)$	$1.141(0.014)$
$3-\mathrm{rCM}$	$1.124(0.008)$	$1.113(0.011)$	$1.090(0.013)$
xCM	$0.995(0.008)$	$0.994(0.009)$	$1.021(0.015)$
$3-\mathrm{xCM}$	$1.022(0.010)$	$1.018(0.013)$	$0.997(0.015)$
Bonus	$1.116(0.008)$	$1.091(0.009)$	$1.091(0.015)$
3-Bonus	$1.158(0.011)$	$1.131(0.014)$	$1.058(0.016)$

The average ratio of the utility to a hospital from deviating to the canonical strategy compared to the utility for truthful reporting.

- Neither rCM nor Bonus are BNIC for (m, n)-combination (hospital, size).
- The canonical deviation is not useful in xCM but may be marginally useful in $3-\mathrm{xCM}$. The incentives of $\mathrm{xCM}-*$ mechanisms are better even in environments where the perfect-matching properties do not hold precisely.

Experiments

Welfare: 3-WAY exchanges

mechanism	welfare	OO?	O[RS]	ORU	OSU	OUU	RRS	SSS
no pooling	$29.73(0.24)$	153	572	1205	1479	81	573	369
max matching	$39.51(0.23)$	1	50	1694	93	428	1686	1073
3-rCM-all-c	$35.40(0.20)$	164	480	1203	1623	83	1055	505
		0	3.54	2.74	0.92	0	46.16	27.52
3-xCM-all-t	$37.56(0.22)$	299	20	2408	200	170	0	1263
		100	100	100	100	100	-	100
3-Bonus-all-c	$34.62(0.20)$	175	478	1167	1586	82	568	515
		1.14	0	0	0	0	0	28.93

- There is significant benefit from pooling (compare "no-pooling" with "max-matching").
- Main inefficiency of 3-xCM relative to max-matching, because of fewer UD and S pairs matched.
- Inefficiency of Bonus due to insufficient use of R pairs (for example, compare ORU matches in $3-\mathrm{xCM}$ and Bonus).

Source code

- Source code and experiments fully available online: https://github.com/ptoulis/kidney-exchange
- IP solver powered by commercial Gurobi which is available for free with an academic license ${ }^{6}$
- Written in R, easy-to-use/extend, statistical tools readily available
$>$ pool $=$ rrke.pool($m=4, \mathrm{n}=60$, uniform.pra=T)
> kpd = kpd.create(pool, strategy.str="ttc", include.3way=T)
> out = Run.Mechanism(kpd, "xCM", include.3way=T)
> get.matching.utility (out)
[1] 58
> out\$information

info2.00	info2.OR	info2.0S	info2.0U	info2.RR	info2.RS	info2.RU	info2.SS
0	0	0	9	3	0	0	5
info2.SU	info2.UU	info3.000	info3.00R	info3.00S	info3.OOU	info3.ORR	info3.ORS
0	0	0	0	0	0	0	0
info3.ORU	info3.OSS	info3.0SU	info3.0UU	info3.RRR	info3.RRS	info3.RRU	info3.RSS
3	0	0	3	0	0	0	0
info3.RSU	info3.RUU	info3.SSS	info3.SSU	info3.SUU	info3.UUU	n2way	n3way
0	0	2	0	0	0	17	8

${ }^{6}$ http://www.gurobi.com/products/licensing-and-pricing/academic-licensing

Conclusions

- We apply random graph theory to quantify the statistical properties of kidney exchange graphs; pooling benefits sublinear to \#hospitals ($m-\sqrt{m}$) and proportional to square-root of hospital size ($\propto \sqrt{n}$).
- We design a mechanism, namely xCM, to address incentives issues in multi-hospital kidney exchanges (e.g. hospital hiding pairs) in a static context.
- Our mechanism is efficient and EPIC under perfect-matching assumptions that are validated for moderately-sized hospitals (~ 30 pairs/hospital) and a "uniform-PRA" model (uniform crossmatch probability), and several blood-type distributions.
- In particular, our mechanism fares better compared to the Bonus mechanism (Ashlagi \& Roth, 2013), which is shown to be vulnerable to deviations.
- We publicly release a code-base which can be used for reproducibility and further research on the domain.

THANK YOU

[^0]: ${ }^{1}$ e.g. $50 \% \mathrm{O}, 30 \% \mathrm{~A}, 15 \% \mathrm{~B}, 5 \% \mathrm{AB}$ (tunable parameters)
 ${ }^{2} p_{c}=$ "cross-match" probability that patient rejects the transplant from a random donor (e.g. 20\%); we also test on a "non-uniform" model where p_{c} describes the patient's sensitivity.

[^1]: ${ }^{3}$ The rule allocates +1 to all agents as long as the supply is larger than the \#agents "in-demand"; it then allocates the remainder uniformly at-random.

[^2]: ${ }^{4}$ i.e., efficient allowing only 2-way matches

[^3]: ${ }^{5}$ Both mechanisms make extensive use of uniformly-random maximum matchings.

