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Introduction
Design goal

Assume m hospitals indexed by h, each with n patient/donor pairs
embedded in a directed compatibility graph Gh. We seek to design
a kidney exchange mechanism M, that selects a set of cycles out
of the combined set of reported graphs

⋃
h G ′h.

Find M, computing M(
⋃
h

G ′h) = {cycles}

subject to, efficiency({cycles}) & incentives(M)
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Introduction
Overview of results

Focusing on a single graph Gh, we derive a formula for the
expected #matches in a maximum 2-cycle matching and show
this is given by a formula γn − β

√
n − 2.

The “benefit from pooling” m hospitals of size n is thus
shown to be ∝ (m −

√
m)
√

n.

We design a mechanism that is efficient and EPIC with
hospitals revealing all pairs (G ′h = Gh) for moderately-sized
hospitals.

We perform extensive simulation studies using the xCM and the
Bonus mechanisms (Ashlagi & Roth, 2013), and demonstrate
significant advantages in efficiency and incentives of xCM.

We develop and provide our source code written in R through
Github; experimental results are fully reproducible.
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Single-hospital setting
Notation

We write (P,D) to denote a pair where patient has blood-type
P and donor has blood-type D e.g., (A,B), (O,AB) and so
on. We assume only 4 blood-types, namely O, A, B, AB.

We write (P1,D1) → (P2,D2) to denote that the donor of
pair #1 can donate to the patient of pair #2.

The patient-donor list of a single hospital h can be
represented as a compatilibity graph G (V ,E ) where

V = {(Ph,Dh)} = patient-donor pairs set.
E = (eij) = compatilibity relationships among pair such that,
eij = 1⇔ (Pi ,Di )→ (Pj ,Dj)

For the most part of this talk, we focus on 2-way exchanges
(also called matchings). We write, (P1,D1) ↔ (P2,D2) to
denote that the two pairs can exchange kidney transplants.

We will extend to 3-way exchanges at the end of this talk.
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Single-hospital setting
Random-graph generative model

Blood-types in pairs are random; so are the compatibilities (edges).

Let G̃n denote the random compatibility graph; we assume the
following generative process:

Start with an empty set.

Sample one pair donor/patient and their blood types.1

Add pair to the collection, if

Donor/patient are blood-type incompatible (deterministic test).
OR

Donor/patient are blood-type compatible but tissue-type
incompatible (random test with success probability 1− pc). 2

REPEAT until n pairs have been collected.

1e.g. 50% O, 30% A, 15% B, 5% AB (tunable parameters)
2pc = “cross-match” probability that patient rejects the transplant from a

random donor (e.g. 20%); we also test on a “non-uniform” model where pc
describes the patient’s sensitivity.
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Single-hospital setting
Structural properties of G̃n

Four different “types” of pairs in the
compatibility graph (Ünver, 2010).

Over-demanded pairs (OD) are more central
in the graph, but less frequent (∼ 10%).

Under-demanded pairs (UD) are the most
frequent (> 50%); can only donate to OD
pairs; hardest to match.

Self-demanded pairs (S) form disconnected
components. Internal 2-way matches within
the components are possible.

Reciprocal pairs (R) form a bipartite graph.
Strategic issues in kidney exchanges are
mainly due to such pairs, since a large
number (∝

√
n) remains (internally)

unmatched.

Figure : Sample of a
compatilbility graph w/ 60
pairs.
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Multi-hospital setting
Benefit from pooling; the “square-root law”

A regular matching contains only (2-way) matches of the form
(OD ↔ UD), (S ↔ S) and (R ↔ R). When it exists, it is
maximum (Roth et. al., 2004).

We can show that a regular matching exists with high
probability; then

#unmatched = (#OD-UD)︸ ︷︷ ︸
∝n

+ (#surplus R)︸ ︷︷ ︸
∝
√
n

+ (#surplus S)︸ ︷︷ ︸
∝O(1)

Thus, if µ(n) = #expected matches,

µ(n) = γn − β
√

n − 2

Square-root law. Assume m hospitals of the same size n:

Pooling benefit = µ(mn)−mµ(n) ∝ (m −
√

m)
√

n
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Multiple-hospital setting
Incentives: overview of assumptions

To study incentives we assume an economy of m hospitals, with the
same (moderate) patient/donor list size n.

A hospital manipulates by hiding pairs only. Edges cannot be
misreported (compatibility can be verified through medical tests).

For our analysis, we assume that the combined graph of (m − 1)
hospital graphs satisfy certain perfect-matching assumptions:

R-perfect: In balanced subgraph of an unbalanced
R-subgraph, can be perfectly matched.
S-perfect: Any component in the S-subgraph (e.g. (A,A)
pairs) can match all but one pairs.

We also assume that every hospital is

OD/UD-perfect: All OD pairs can be matched with UD pairs.

Analysis conditioned on aforementioned properties. We study EPIC,
not DSIC.
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Mechanism design: The xCM mechanism
2-way exchanges

The xCM mechanism works as follows:

Step 1. (Match S pairs) Match pooled S-pairs internally such that
each hospital h matches at least as many as it can match
internally.

Step 2. (Match R pairs) Match the short side of the pooled
R-subgraph to the long-side under the probabilistic uniform
rule (Ehlers & Klaus, 2003).3 Each hospital matches at least as
many as it can match internally.

Step 3. (Match remaining pairs locally) Enforce an almost-regular
matching internally for each hospital, with all pairs that
remain.

Step 4. (Match remaining pairs globally) Compute a random,
almost-regular matching on the combined graph formed from
all remaining unmatched pairs in the pool.

3The rule allocates +1 to all agents as long as the supply is larger than the
#agents “in-demand”; it then allocates the remainder uniformly at-random.
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Mechanism design: The xCM mechanism
Incentives and efficiency

Theorem 1. The xCM mechanism is EPIC and 2-way efficient4 for
properties (i) S-perfect and R-perfect on compatibility graphs the
size of every marginal economy and larger, and (ii) OD/UD-perfect
on every hospital’s compatibility graph.

Efficiency follows because xCM computes an overall matching
that is regular, and thus maximum on the combined S- and
R-subgraphs, and matches every OD pair to a UD pair.

The OD/UD-perfect property holds for virtually any graph at
2% error (i.e., 2% OD pairs remain unmatched on average in
regular matchings).

The R-,S-perfect assumptions for the marginal economies hold
at 2% for m = 4 hospitals, at n ≥ 25.

4i.e., efficient allowing only 2-way matches
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Mechanism design: xCM and Bonus

The Bonus mechanism (Ashlagi & Roth, 2013) focuses on the
OD-UD subgraph and employs a lottery to allocate the “OD
supply”.

operation xCM Bonus

match S pairs
maximum matching 5

under IR constraints
maximum matching

match R pairs
uniform probabilistic rule

under IR constraints

maximum matching

under IR constraints

match OD/UD pairs almost-regular matching OD/UD lottery

5Both mechanisms make extensive use of uniformly-random maximum
matchings.

11



12



Game of Nodes
Matching on R subgraph (bipartite case)

Assume 3 hospitals (different colors in figure)
sharing only R pairs. Their goal is to maximize
individual #matches.

Assume any pair from one side can be matched
to any other pair from the other side (stronger
assumption than “R-perfect”).

If we just pick a random maximum then, by
symmetry, H3 will match

3︸︷︷︸
all short-side pairs

+ 6︸︷︷︸
short-side supply

× 5/(5 + 4)︸ ︷︷ ︸
relative proportion in long-side

By perfect-matching, a strategy can be
represented by (x , y) where x , y are the #pairs
reported in each side.
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a

H1
a
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H3
a

H3
a

H3
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b
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b
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Game of Nodes
Matching on R subgraph: Numerical example

Assume three hospitals with reports,
H1(25, 10), H2(20, 50) and H3(15, 30)

each node in figure = 5 pairs.

Consider 3 mechanisms:

random max matching (rCM)
match internally → random max matching
(IR+rCM)
uniform probabilistic rule (uniform)

Also consider 3 strategies

truthful : share all nodes from each side
canonical : match internally, report
remainder
“long-R”: report the entire long side only
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Game of Nodes
Matching on R subgraph: Numerical example

H1(25, 10), H2(20, 50) and H3(15, 30)

Assume H1,H2 are truthful and H3 is being
strategic. Then the expected utilities for H3

are given by the table below

strategy mechanism
rCM IR+rCM uniform

truthful 35 35 37.5
canonical 39 35 37.5

long-R 45 37.5 37.5
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Game of Nodes
Matching on R subgraph: Numerical example

H1(25, 10), H2(20, 50) and H3(15, 30)

Assume H1,H2 are truthful and H3 is being
strategic. Then the expected utilities are given
by the table below

strategy mechanism
rCM IR+rCM uniform

truthful 35 35 37.5
canonical 39 35 37.5

long-R 45 37.5 37.5

For example, (rCM + canonical):

2 · 15︸ ︷︷ ︸
internal matches

+
15

10 + 50 + 15︸ ︷︷ ︸
relative prop. in long-side

× (20 + 25)︸ ︷︷ ︸
short side

= 39
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Game of Nodes
Matching on R subgraph: Numerical example

H1(25, 10), H2(20, 50) and H3(15, 30)

Assume H1,H2 are truthful and H3 is being strategic.
Then the expected utilities are given by the table
below

strategy mechanism
rCM IR+rCM uniform

truthful 35 35 37.5
canonical 39 35 37.5

long-R 45 37.5 37.5

For example, (IR+rCM and “long-R”) equiv. to
H1(15, 0), H2(0, 30) and H3(0, 30):

30

30 + 30︸ ︷︷ ︸
relative prop. in long-side

× 15︸︷︷︸
short side

+2 min{15, 30−matched}︸ ︷︷ ︸
internal

= 37.5

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

17



Game of Nodes
Matching on OD/UD subgraph: Numerical example

Bonus splits hospitals in two groups, S1 and S2. Hospital h (in S2)
has 1 OD and 2 UD pairs. Same-side hospitals have 4 UD pairs.
The 6 UD pairs in S2 are to be matched with 2 OD pairs from S1.
Goal: Allocate the 2 OD pairs to the 6 UD pairs.

O-A1 O-A2 O-A3 O-A4 O-A5 O-A6

A-O1 A-O2

A-O

} OD pairs from hospital set S1

Hospital h can match one UD pair internally.

Pairs of hospital h.

UD pairs from hospital set S2 \ {h}
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Game of Nodes
Matching on OD/UD subgraph: Numerical example

Case 1 (h truthful). Bonus preallocates a match. Probability
of matching the other is 2/6 (not 1/5), so overall utility

1︸︷︷︸
OD “easy-to-match”

+ 1︸︷︷︸
UD preallocated

+ 2/6︸︷︷︸
lottery

= 35/15.

O-A1 O-A2 O-A3 O-A4 O-A5 O-A6

A-O1 A-O2

A-O

} OD pairs from hospital set S1

Pairs of hospital h.

UD pairs from hospital set S2 \ {h}
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Game of Nodes
Matching on OD/UD subgraph: Numerical example

Case 2 (h deviates). Probability of matching the other is 2/5,
so overall utility is

2︸︷︷︸
internal

+ 2/5︸︷︷︸
lottery

= 36/15 > 35/15︸ ︷︷ ︸
truthful

.

O-A2 O-A3 O-A4 O-A5 O-A6

A-O1 A-O2 } OD pairs from hospital set S1

Pairs of hospital h.

UD pairs from hospital set S2 \ {h}
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Extension to 3-way exchanges: 3-xCM

One key idea is to define virtual-R pairs as
(A,O) → (O,B) ≡“virtual A-B” pair
(B,O) → (O,A) ≡ “virtual B-A” pair

The virtual-R pairs are important in clearing out the
imbalance in the R subgraph and thus in achieving full
efficiency (asymptotically) in 3-way exchanges.

Another 3-cycle of interest from a welfare perspective involves
1 (OD) and 2 UD pairs. Such cycles are explicitly explored by
3-xCM but they are, generally, less frequent in practice.
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Experiments
Incentives: 2-way exchanges

mech. profile strategy avg.utility #OD #R #S #UD

rCM

tttttt t 5.90 (0.03) 1629 2088 1778 1584
tttttc c 6.68 (0.06) 1604 2267 1802 2347
tccccc t 4.54 (0.05) 1492 1656 1476 371
cccccc c 5.57 (0.03) 1462 1878 1580 1201

xCM

tttttt t 5.85 (0.03) 1618 2125 1811 1458
tttttc c 5.81 (0.06) 1600 2137 1765 1468
tccccc t 5.59 (0.07) 1485 1840 1582 1246
cccccc c 5.57 (0.03) 1457 1879 1583 1201

Bonus

tttttt t 5.67 (0.03) 1537 2081 1778 1410
tttttc c 6.19 (0.06) 1571 1994 1784 2075
tccccc t 4.75 (0.06) 1405 1889 1511 424
cccccc c 5.50 (0.03) 1428 1870 1574 1179

Table : 2-cycles, with m = 6, and n = 12.

Random maximum-matching (rCM) is not BNIC. Canonical deviation (hiding all
possible internal matches) yields 6.68 matches vs. 5.9 when truthful.
The canonical deviation is not useful in xCM. This is consistent with the EPIC
theoretical property.
The Bonus mechanism is not BNIC. Canonical deviation yields 6.19 vs 5.67
when truthful. The lottery seems to hurt matches of #R and UD pairs, as
theoretically expected.

22



Experiments
Incentives: summary

(m, n) =(#hospitals, #size each.)
mechanism (4, 18) (6, 12) (12, 6)

rCM 1.148 (0.007) 1.133 (0.008) 1.141 (0.014)
3-rCM 1.124 (0.008) 1.113 (0.011) 1.090 (0.013)
xCM 0.995 (0.008) 0.994 (0.009) 1.021 (0.015)

3-xCM 1.022 (0.010) 1.018 (0.013) 0.997 (0.015)
Bonus 1.116 (0.008) 1.091 (0.009) 1.091 (0.015)

3-Bonus 1.158 (0.011) 1.131 (0.014) 1.058 (0.016)

Table : The average ratio of the utility to a hospital from deviating to the
canonical strategy compared to the utility for truthful reporting.

Neither rCM nor Bonus are BNIC for (m, n)-combination (hospital, size).

The canonical deviation is not useful in xCM but may be marginally useful in
3-xCM. The incentives of xCM-* mechanisms are better even in environments
where the perfect-matching properties do not hold precisely.
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Experiments
Welfare: 3-way exchanges

mechanism welfare OO? O[RS] ORU OSU OUU RRS SSS
no pooling 29.73 (0.24) 153 572 1205 1479 81 573 369

max matching 39.51 (0.23) 1 50 1694 93 428 1686 1073

3-rCM-all-c
35.40 (0.20) 164 480 1203 1623 83 1055 505

0 3.54 2.74 0.92 0 46.16 27.52

3-xCM-all-t
37.56 (0.22) 299 20 2408 200 170 0 1263

100 100 100 100 100 - 100

3-Bonus-all-c
34.62 (0.20) 175 478 1167 1586 82 568 515

1.14 0 0 0 0 0 28.93

There is significant benefit from pooling (compare “no-pooling”
with “max-matching”).

Main inefficiency of 3-xCM relative to max-matching, because of
fewer UD and S pairs matched.

Inefficiency of Bonus due to insufficient use of R pairs (for example,
compare ORU matches in 3-xCM and Bonus).
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Source code

Source code and experiments fully available online:
https://github.com/ptoulis/kidney-exchange

IP solver powered by commercial Gurobi which is available for free
with an academic license6

Written in R, easy-to-use/extend, statistical tools readily available

> pool = rrke.pool(m=4, n=60, uniform.pra=T)

> kpd = kpd.create(pool, strategy.str="ttc", include.3way=T)

> out = Run.Mechanism(kpd, "xCM", include.3way=T)

> get.matching.utility(out)

[1] 58

> out$information

info2.OO info2.OR info2.OS info2.OU info2.RR info2.RS info2.RU info2.SS

0 0 0 9 3 0 0 5

info2.SU info2.UU info3.OOO info3.OOR info3.OOS info3.OOU info3.ORR info3.ORS

0 0 0 0 0 0 0 0

info3.ORU info3.OSS info3.OSU info3.OUU info3.RRR info3.RRS info3.RRU info3.RSS

3 0 0 3 0 0 0 0

info3.RSU info3.RUU info3.SSS info3.SSU info3.SUU info3.UUU n2way n3way

0 0 2 0 0 0 17 8

6http://www.gurobi.com/products/licensing-and-pricing/academic-licensing
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Conclusions

We apply random graph theory to quantify the statistical properties
of kidney exchange graphs; pooling benefits sublinear to #hospitals
(m −

√
m) and proportional to square-root of hospital size (∝

√
n).

We design a mechanism, namely xCM, to address incentives issues in
multi-hospital kidney exchanges (e.g. hospital hiding pairs) in a
static context.

Our mechanism is efficient and EPIC under perfect-matching
assumptions that are validated for moderately-sized hospitals (∼ 30
pairs/hospital) and a “uniform-PRA” model (uniform crossmatch
probability), and several blood-type distributions.

In particular, our mechanism fares better compared to the Bonus

mechanism (Ashlagi & Roth, 2013), which is shown to be
vulnerable to deviations.

We publicly release a code-base which can be used for
reproducibility and further research on the domain.
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