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Statistical analysis of stochastic gradient methods for generalized linear models
(extended manuscript with proofs)

Abstract

We study the statistical properties of stochastic
gradient descent (SGD) using explicit and im-
plicit updates for fitting generalized linear mod-
els (GLMs). Initially, we develop a computa-
tionally efficient algorithm to implement implicit
SGD learning of GLMs. Next, we obtain ex-
act formulas for the bias and variance of both
updates which leads to two important observa-
tions on their comparative statistical properties.
First, in small samples, the estimates from the
implicit procedure are more biased than the es-
timates from the explicit one, but their empir-
ical variance is smaller and they are more ro-
bust to learning rate misspecification. Second,
the two procedures are statistically identical in
the limit: they are both unbiased, converge at the
same rate and have the same asymptotic variance.
Our set of experiments confirm our theory and
more broadly suggest that the implicit procedure
can be a competitive choice for fitting large-scale
models, especially when robustness is a concern.

1. Introduction
Stochastic gradient descent (SGD) is a stochastic approx-
imation (SA) method. Assume a random variable y ∈ R
as the outcome of interest controlled by a parameter θ ∈ R
with regression functionM(θ) = E (y| θ), and consider the
problem of finding θ∗ such that M(θ∗) = E (y| θ∗) = 0.
The classical SA procedure (Robbins & Monro, 1951)
maintains an estimate θn−1 of θ∗ at each iteration n and
then obtains a sample yn (e.g. through an experiment) such
that E (yn) = M(θn−1). The estimate is then updated to
θn = θn−1 − anyn. The scalar an > 0 is the learning rate
and should decay to zero but not too fast in order to guaran-
tee consistency of the method even when the analytic form
of M(θ) is not known. Although initially applied in ex-
perimental design, the SA procedure was soon adapted for
statistical estimation. Sakrison (Sakrison, 1965) assumed
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yn ∼ f(yn; θ∗) i.e., that observations are drawn indepen-
dently from a statistical model with unknown fixed param-
eter θ∗. Sakrison’s recursive estimation procedure was de-
fined using the update θn = θn−1 + an`

′(θn−1; yn), where
`(θ; yn) = log f(yn; θ) is the log-likelihood of θ given
observation yn. Under certain regularity and monotonic-
ity conditions, E (`′(θ∗; yn)) = 0 and so according to SA
theory, the estimates θn converge to the real parameter θ∗

with possibly optimal asymptotic efficiency (Anbar, 1973;
Fabian, 1973). In recent years, Sakrison’s recursive esti-
mation method has become known as stochastic gradient
descent (SGD). Further, note that the aforementioned SGD
update is explicit i.e., θn can be calculated immediately
from θn−1 and the data at the n-th iteration. For the rest
of this paper, we will refer to this procedure as “SGD with
explicit updates” or standard SGD for short. Despite the
theoretical guarantees, standard SGD is generally not ro-
bust to learning rate misspecification or input noise. Re-
cursive procedures that aim to control the size of updates
have thus been proposed such as,

θn = arg min
θ
{D(θ, θn−1)− an`(θ; yn)} (1)

in which `(·) is the log-likelihood as before and D(·, ·) is
some distance function. Minimizing (1) yields updates of
the form θn = g(θn; θn−1, yn, an), that are called implicit
since the future estimate θn appears in both sides of the
equation. We will refer to procedure (1) as “SGD with im-
plicit updates”1 or implicit SGD for short.

Historically, the duo of explicit-implicit updates originate
from the numerical methods invented by Euler (ca. 1770)
for approximating solutions of ordinary differential equa-
tions (Hoffman & Frankel, 2001). However, the normal-
ized least mean squares (NLMS) filter (Nagumo & Noda,
1967) was, arguably, the first statistical model that used an
implicit update as in Equation (1) and was shown to be
consistent and robust to excess input noise (Slock, 1993).2

1 Thus, we still regard procedure (1) to be a SGD procedure
because the gradient is calculated at one data point yn at a time
and, hence, it is stochastic.

2 In the NLMS algorithm (Nagumo & Noda, 1967), the multi-
variate update has the form θn = θn−1+(a+ b||xn||2)−1(yn−
xᵀ

nθn−1)xn, a, b > 0 which can be written in the form of (1) for
which D(·, ·) is the usual L2 norm and the log-likelihood is that
of a linear normal model.
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Statistical analysis of SGD methods for fitting GLMs

Since then, several online learning models have been us-
ing implicit updates in various forms. For example, mirror-
descent and projected subgradient algorithms (Nemirovski,
1983; Beck & Teboulle, 2003) and variants such as FOBOS
(Duchi & Singer, 2009) include updates that can be written
in the form of Equation (1). The regret of such algorithms
using implicit updates and D(·, ·) a Bregman divergence
has been shown to be comparable to standard SGD bounds
(Kivinen & Warmuth, 1995; Kivinen et al., 2006; Kulis &
Bartlett, 2010) and their robustness has been proven useful
in a wide range of modern machine learning problems (Ne-
mirovski et al., 2009; Kulis & Bartlett, 2010; Schuurmans
& Caelli, 2007).

However, the statistical properties of SGD methods, ei-
ther implicit or standard, remain not well-understood. In
this paper, we perform a statistical analysis of the implicit
method vis-à-vis with a standard SGD counterpart in the
family of generalized linear models (GLMs). Our main
contributions are the following:

(i) We adapt the classical SA procedure (Robbins &
Monro, 1951) and the proof therein to formalize its
implicit counterpart and show that the method is con-
sistent in quadratic mean (Theorem 2.1). Next, we
focus on the problem of online estimation of GLMs
and provide a computationally efficient algorithm for
applying implicit updates (Algorithm 1).

(ii) We derive formulas for the asymptotic bias of the im-
plicit and standard SGD procedures (Theorem 4.1).
We show that the implicit procedure converges slower
(in general) but asymptotically at the same rate as the
standard one. Furthermore, we derive exact formulas
for the asymptotic variance of both procedures (The-
orem 4.2) and, thus, show that they have the same
asymptotic efficiency.

(iii) We show that the implicit method is unconditionally
stable under any specification of the learning rate,
whereas standard SGD can deviate arbitrarily when
the learning rate is misspecified (Lemma 4.2).

For clarity of exposition, we omit most proofs from the cur-
rent document and make them all available online in the
unpublished, full version of this paper. 3

2. Implicit stochastic approximation
We first introduce a general definition of the implicit SA
procedure by adapting the original work of (Robbins &

3The full version of the paper together with the accom-
panying source code and documentation can be found at the
following location: http://www.people.fas.harvard.edu/∼ptoulis/
harvard-homepage/implicit-sgd.html.

Monro, 1951). Assume a function M : R → R for which
we wish to estimate the zero M(θ∗) = 0. Starting from
some θ0 ∈ R, we update our estimates at iteration n ac-
cording to observed data yn ∈ R, a learning rate an ∈ R+

and the following rule:

θn = θn−1 − anyn (2)

Equation (2) defines the implicit stochastic approximation
procedure under the following assumptions:

Assumption 2.1. an > 0,
∑
a2n <∞,

∑
an =∞.

Assumption 2.2. The random variable yn has a distribu-
tion that depends on θn such that E (yn| θn) = M(θn).
Furthermore, it is bounded such that P (|yn| < C) = 1 for
some constant C > 0.

Assumption 2.3. The function M(x) is non-decreasing
and differentiable. Furthermore, M ′(θ∗) > 0.

Note that only Assumption (2.2) differentiates between
the standard SA procedure and the implicit one. Rather
counter-intuitively, the observation yn is considered a sam-
ple from the distribution of the future update θn.4 Clearly,
one may need to know the form of that distribution in or-
der to perform the update. The following theorem estab-
lishes that the implicit SA procedure converges in quadratic
mean, just like the standard SA counterpart.5.

Theorem 2.1. Suppose that assumptions (2.1)-(2.3) hold.
Then, the implicit SA procedure (2) converges in quadratic
mean i.e.,

E (θn − θ∗)2 → 0 as n→∞ (3)

The proof is an adaptation of the original proof from (Rob-
bins & Monro, 1951) and is given in the full version of this
paper.

3. Preliminaries
We now focus on the family of GLMs (Nelder & Wedder-
burn, 1972). Let y ∈ R denote the outcome of interest,
θ∗ ∈ Rp be the vector of unknown model parameters and

4Originally, the SA procedure was created for experimental
design. Assume that y is a random response to a drug at a dose
level θ. Assume θ∗ to be the dose level in which the response
will have no effects i.e., E (y| θ∗) = 0. Then the SA procedure
describes a succession of dose levels θn, and thus a series of ex-
periments with outcomes yn, that converges to θ∗. This is not
possible with the implicit procedure since yn does not depend on
θn−1 but on θn, i.e. the future dose level!

5 Note that the convergence of implicit update procedures for
linear classifiers has already been shown in the literature (Cesa-
Bianchi, 2006). However, Theorem 2.1 formalizes the implicit
procedure under the general stochastic approximation framework
which is broader in scope than linear classifiers.

http://www.people.fas.harvard.edu/~ptoulis/harvard-homepage/implicit-sgd.html
http://www.people.fas.harvard.edu/~ptoulis/harvard-homepage/implicit-sgd.html
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Statistical analysis of SGD methods for fitting GLMs

x ∈ Rp denote a vector of features. In a GLM, we as-
sume that the outcome y follows some distribution in the
exponential family as follows

y|x ∼ exp

(
ηy − b(η)

ψ

)
c(y, ψ) where η = θ∗ᵀx (4)

The quantity η is the linear predictor, the scalar ψ > 0 is
the dispersion parameter as it affects the variance of the
outcome, and b(·), c(·, ·) are appropriate real-valued func-
tions. Equation (4) is known as the canonical form because
the linear predictor appears as a coefficient of y in the den-
sity function. Furthermore, the expected value of the out-
come is given by the link function g(·) of the model i.e.,

g (E (y|x)) = θ∗ᵀx = η (5)

The inverse of the link function h = g−1 is the transfer
function of the GLM model so that E (y|x) = h(θ∗ᵀx).
We will assume GLMs in the canonical form with a mono-
tone link function which we will refer to as canonical
GLMs. This family is very broad and widely-applicable as
it contains models such as the linear normal model, logistic
regression, Poisson regression and so on. To illustrate our
notation, in logistic regression we assume P (y = 1|x) =
py(1− p)1−y where p is a function of x. This can be writ-
ten in the form of Equation (4) with η = log(p/(1 − p)),
b(η) = log(1 + eη), ψ = 1 and c(y, ψ) = 1. We
know that E (y|x) = p = exp(θ∗ᵀx)(1 + exp(θ∗ᵀx))−1

and so the link function g(·) is the logit function g(u) =
log(u/(1− u)) and the transfer function is the logistic i.e.,
h(u) = eu(1+eu)−1. Table 1 summarizes the link/transfer
functions for the three aforementioned models. The results

model g(u) h(u)
Normal u u
Logistic log( u

1−u ) eu(1 + eu)−1

Poisson log(u) eu

Table 1. Three well-known canonical GLMs.

in the proposition that follows will be useful for the rest
of our analysis. As these are standard results in the theory
of GLMs (Nelder & Wedderburn, 1972), we just give short
proofs in the full version of this paper.
Proposition 3.1. Let θ∗ ∈ Rp be the true parameter vector
of a canonical GLM model with outcome y ∈ R, and x ∈
Rp be some feature vector. Then,

(a) E (y|x) = h(θ∗ᵀx) = b′(θ∗ᵀx)

(b) Var (y|x) = ψh′(θ∗ᵀx) = b′′(θ∗ᵀx)

(c) ∇`(θ; y,x) = 1
ψ (y − h(θᵀx))x

(d) I(θ) = −E (∇∇`(θ; y,x)) = 1
ψE (h′(θᵀx)xxᵀ)

where θ ∈ Rp is an arbitrary vector.

3.1. Online learning of GLMs using SGD

In this paper, we assume the task of learning online the un-
known parameter vector θ∗ of a GLM model (4). At every
iteration indexed by n = 1, 2, · · · a new feature vector, de-
noted by xn, is sampled independently from a fixed and
known distribution. Given xn, the outcome yn is sampled
according to a canonical GLM as in (4). Upon observing
(yn,xn), we update our estimate of θ∗ from θn−1 to θn.
The initial estimate θ0 has been set a priori to a reason-
able value. We now proceed to define the implicit and the
standard SGD procedures for learning GLMs. The exact
requirements for the learning rate an will be set in Assump-
tions (4.1).

Definition 3.1. The standard SGD learning procedure for
a canonical GLM is defined as:

θn = θn−1 + an
(
yn − h(θᵀn−1xn)

)
xn (6)

After n steps of procedure (6), the vector θsgdn is the stan-
dard SGD estimator of θ∗.

Definition 3.2. The implicit SGD learning procedure for a
canonical GLM is defined as:

θn = θn−1 + an (yn − h(θᵀnxn))xn (7)

After n steps of procedure (7), the vector θimn is the implicit
SGD estimator of θ∗.

Discussion. First, note that we omit the term of (1/ψ) of
the log-likelihood gradient (see Proposition (3.1)-(c)) since
it can be factored into an. Second, we clarify that Defini-
tions 6 and 7 correspond to “baseline” definitions of the
two learning procedures. Especially for standard SGD,
there has been significant work in improving the perfor-
mance of the procedure. These methods include averag-
ing of the updates to speed up convergence (Polyak & Ju-
ditsky, 1992), approximating second-order information as
in SGD-QN (Bordes et al., 2009), using adaptive learning
rates as in AdaGrad (Duchi et al., 2011; Schaul et al., 2012)
or variance reduction methods (Johnson & Zhang, 2013;
Roux et al., 2012). So far, the implicit procedure has re-
ceived disproportionately less attention, however it is rea-
sonable to expect that similar methods could be employed
there as well. In fact, our subsequent analysis suggests that
the implicit procedure, being less sensitive to learning rate
specification, is likely to be more amenable to performance
improvements.

3.2. Efficient implicit updates for canonical GLMs

The implicit equation (7) cannot be solved in general be-
cause the form of h(·) can be arbitrary. Furthermore, in a
multi-dimensional setting, this would require the solution
of multiple simultaneous equations. However, it has al-
ready been noted that line search methods can be employed
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Statistical analysis of SGD methods for fitting GLMs

Algorithm 1 Implicit learning of canonical GLMs
1: for all n ∈ {1, 2, · · · } do
2: rn ← an

(
yn − h(θᵀn−1xn)

)
3: Bn ← [0, rn]
4: if rn ≤ 0 then
5: Bn ← [rn, 0]
6: end if
7: ξn = an

[
yn − h

(
θᵀn−1xn + ||xn||2ξn

)]
, ξn ∈ Bn

8: θn ← θn−1 + ξnxn
9: end for

to implement general implicit updates (Kivinen et al., 2006;
Kulis & Bartlett, 2010). Here, we show that the special
structure of the log-likelihood gradient of the GLMs (see
Proposition 3.1-(c)) can be exploited in order to efficiently
compute the implicit updates. Algorithm 1 reduces equa-
tion (7) to a one-dimensional implicit equation which can
be solved efficiently, since narrow search bounds can be de-
rived by using the monotone property of the transfer func-
tion in canonical GLMs.

Lemma 3.1. Algorithm 1 computes estimates θn that are
identical to the estimates of the implicit procedure (7).

Proof. We first show that θn = θn−1 +ξnxn is the correct
update for the implicit procedure, where ξn is computed in
Step 7 of Algorithm 1. We multiply with xn on both sides
of (7) to get,

θᵀnxn = θᵀn−1xn + an
(
yn − h(θᵀn−1xn)

)
xᵀ
nxn

and we apply h(·) on both sides to further obtain,

h(θᵀnxn) = h
(
θᵀn−1xn + an(yn − h(θᵀn−1xn))||xn||2

)
Setting ξn = an(yn− h(θᵀnxn)), we can rewrite the above
equation as

h(θᵀnxn) = h
(
θᵀn−1xn + ξn||xn||2

)
(8)

It also holds that h(θᵀnxn) = yn − ξn/an and so Equation
(8) now becomes,

yn − ξn/an = h(θᵀn−1xn + ξn||xn||2)

Solving for ξn we finally get the one-dimensional implicit
equation,

ξn = an(yn − h(θᵀn−1xn + ξn||xn||2)) (9)

By the definition of ξn and the implicit procedure (7), we
have that θn = θn−1 + ξnxn.

Next we show why the bounds Bn in Algorithm 1 are cor-
rect. Let m(u) = an

(
yn − h(θᵀn−1xn + u||xn||2)

)
and

let l(u) = u be the straight line. We wish to find the

fixed point ξn such that m(ξn) = l(ξn). Since m(u) is
monotone decreasing and l(u) is monotone increasing and
both functions are continuous in R, the intersection point
is unique. The sign of ξn depends on where m(ξn) crosses
the y-axis i.e., m(0) = an

(
yn − h(θᵀn−1xn)

)
≡ rn. If

rn > 0 then ξn > 0. Furthermore, since l(u) is increasing,
l(rn) > l(ξn)⇒ ξn < rn, and thus [0, rn] is a search inter-
val for ξn. Similarly, if rn < 0 then ξn < 0 and ξn > rn.

Note that more restrictive bounds might be available. For
example, if rn > 0 we know that ξn has to be smaller
than the point u0 where m(u) crosses the x-axis, i.e.
m(u0) = 0. Through standard algebra we can obtain that
u0 = (g(yn) − θᵀn−1xn)/||xn||2. In this case, a better
bound for ξn is [0,min(u0, rn)], while a similar argument
works also if rn < 0. Significant improvements are ex-
pected in models where g(u) = o(u) such as the Poisson
regression model. In this case, instead of searching in an in-
terval [0, rn], the algorithm could search in [0, log rn].

4. Statistical analysis
For an estimate θn of θ∗, let µn = E (θn) and Vn =
Var (θn). Denote the bias of θn with bn = µn − θ∗.
We will use a superscript to denote the specific procedure
under study, thus µsgd

n and µim
n denote the means of the es-

timates from the standard SGD and the implicit procedure
respectively, and so on. Also, let zn(θ;x) = h(θᵀxn)xn,
r(θ) = E (zn(θ;x)|θ) and let Dr(·) be the Jacobian of
r(·). If a nonnegative series {γn} satisfies

∑∞
i=1 aiγi <

∞, we will call it an-convergent. We also write C(an) for
an arbitrary an-convergent series. Last, throughout this pa-
per the notation || · || for a vector or a matrix argument
denotes the L2 norm.

Assumption 4.1. (a) Let an > 0 be a decreasing se-
quence of numbers such that

∑
an =∞,

∑
a2n <∞.

Furthermore, an−1/an = 1 + (1/α)an + O(a2n), for
some α > 0.

(b) For sufficiently large n, in the neighborhood of θ∗,
make the approximation

r(θn) = r(θ∗) + Dr(θ
∗)(θn − θ∗) + εn

and assume convergence θn → θ∗ such that the series

(i) ||εn|| and (1/an)||Cov (θn, εn) ||
(ii) ||Var (zn(θn;x)− zn(θ∗;x)) ||

(iii) ||Var (zn(θn;x))−Var (zn(θ∗;x)) ||

are all an-convergent.

The first part of the assumption is essential for convergence
of the stochastic approximation procedure. One sched-
ule that satisfies such assumptions is an = α(β + n)−1,
α, β > 0. Note also that Assumption 4.1 does not cover
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rates of the form (β + n)−c for c < 1; this will be part of
future work. Part (b) of our Assumption 4.1 puts weak con-
straints on convergence to θ∗. For example, if an ∝ n−1,
then the series of Assumption 4.1 (i)-(iii) are allowed to be
of the form n−ε for any ε > 0. Approximation assump-
tions like Assumption 4.1 are generally necessary in order
to derive exact asymptotic variance formulas. For example,
the classical derivation of the variance of the MLE relies
on a second-order approximation (Fisher, 1922). Classical
results on the variance and/or normality of the SA estima-
tors also rely on linearly-bounded derivatives (Sacks, 1958;
Fabian, 1968). In a similar statistical analysis of the stan-
dard SGD iterates, Murata (1998) relies on a complete sec-
ond order approximation of the loss function (see (Murata,
1998), Equation 2.4). In machine learning, the assumptions
are generally weaker since the goal is only to bound the
regret of the online procedure. However, assumptions on
global bounds on the loss-gradients (Zinkevich, 2003) or
the distance ||θn − θ∗|| (Kulis & Bartlett, 2010) are com-
mon.

Lemma 4.1. Let the sequence an satisfy part (a) of As-
sumption 4.1 and consider the following matrix recursions,

Xn = (I − anBn)Xn−1 + an(C +Dn) (10)

Y n = (I + anBn)−1 [Y n−1 + an(C +Dn)] (11)

such that,

(a) Bn → B > 0, ||Bn −Bn−1|| = O(a2n), and

(b)
∑∞
i=1 ai||Di|| <∞ i.e., ||Dn|| is an-convergent.

Then, both recursions approximate the matrixB−1C i.e.,

||Xn −B−1C|| → 0 and ||Y n −B−1C|| → 0 (12)

Corollary 4.1. Consider the following matrix recursions,

Xn = (I − anBn)Xn−1 + a2n(C +Dn) (13)

Y n = (I + anBn)−1
[
Y n−1 + a2n(C +Dn)

]
(14)

where an,Bn,B,C,Dn satisfy the assumptions of
Lemma 4.1. Then,Xn → 0 and Y n → 0. Furthermore, if
the matrix (B − I/α) is positive-definite,

(1/an)Xn → (B − I/α)−1C (15)

(1/an)Y n → (B − I/α)−1C (16)

Proof. Both Xn,Y n → 0 by direction application of
Lemma (4.1). Let X̃n = (1/an)Xn. Divide (13) by an to
obtain

X̃n = (I − anBn) X̃n−1
an−1
an

+ an(C +Dn) (17)

Using Assumption (4.1) (a), we can rewrite as (18) as

X̃n = (I − anΓn) X̃n−1 + an(C +Dn) (18)

where Γn = Bn−I/α+O(an). Then, in the limit, Γn →
B−I/α > 0. Furthermore, ||Γi−Γi−1|| = ||Bi−Bi−1+
O(a2n)|| = O(a2n). Thus, we can apply Lemma (4.1) to
conclude that (1/an)Xn = X̃n → (B − I/α)−1C. The
proof for Y n follows exactly the same reasoning, noting
that

(I + anBn)−1(an−1/an) = (I + anΓn)−1

where Γn = Bn − I/α+O(a2n).

4.1. Asymptotic bias

Taking expectations on both sides of updates (6) and (7),
and using Assumption 4.1 and Lemma 4.1, we obtain the
asymptotic unbiasedness of the SGD estimators through
the following theorem. The complete proof is given in the
full version of the paper.

Theorem 4.1. Under Assumption 4.1, the asymptotic bias
of the standard SGD estimator satisfies,

bsgdn = (I − anψI(θ∗)) bsgdn−1 + C(an) (19)

The asymptotic bias of the implicit SGD estimator satisfies,

bimn = (I + anψI(θ∗))
−1
[
bimn−1 + C(an)

]
(20)

Both methods are asymptotically unbiased i.e., µsgd
n → θ∗

and µim
n → θ∗.

Proof. First, we show that Dr(θ) = ψI(θ). Note that
the (i, j) element of the Jacobian is ∂ri

∂θj
. Denote by xni

the i-th element of xn, and note that ri(·) is equal to
E (h(θᵀxn)xni). Assuming differentiability of expecta-
tion (holds in the general canonical GLM models), we ob-
tain ∂ri

∂θj
= ψE (h′(θᵀxn)xnixnj). Therefore, by Proposi-

tion (3.1), it holds

Dr(θ) = E (h′(θᵀxn)xnx
ᵀ
n) = ψI(θ) (21)

Recall that the SGD procedure is:

θn = θn−1 + αn(yn − h(θᵀn−1xn))xn

Taking expectations on both sides, we have

µsgd
n = µsgd

n−1 + αnE (ynxn)− αnE
(
h(θᵀn−1xn)xn

)
= µsgd

n−1 + anE (r(θ∗)− r(θn−1)) (22)
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By Assumption 4.1-(b), we have

r(θ∗)− r(θn−1) = −Dr(θ
∗)(θn−1 − θ∗)− εn−1

Subtracting θ∗ from both sides and using (21), gives

bsgdn = (I − anψI(θ∗))bsgdn−1 − anE (εn−1)

By Assumption (4.1)-(bi),
∑
i ai||εn|| < ∞, and this

yields the desired result in Equation (19). Direct applica-
tion of Lemma (4.1) yields bsgdn → 0.

The implicit case is symmetrical:

µim
n = µim

n−1 + αnE (r(θ∗)− r(θn))⇒
bimn = (I + anψI(θ∗))−1bimn − anDn (23)

where we set Dn = (I + anψI(θ∗))−1E (εn) = O(an),
and so the result in (20) is established. Furthermore, by
Lemma (4.1), we have bimn → 0 as well.

Note that Theorem 4.1 implies that the standard SGD
procedure converges faster than the implicit one, since
||(I − anψI(θ∗))|| < ||(I + anψI(θ∗))−1|| for suffi-
ciently large n. However, the rates become equal in the
limit.

4.2. Asymptotic variance

Taking variances on both sides of updates (6) and (7), and
using Assumption 4.1 and Corollary 4.1, we obtain the ex-
act formula for the asymptotic variances of the SGD esti-
mators through the following theorem. The complete proof
is also given in the full version of the paper.

Theorem 4.2. Under Assumption (4.1) and if the matrix
(2ψI(θ∗)− I/α) is positive-definite, the asymptotic vari-
ance of the standard SGD estimator satisfies,

(1/an)Vsgd
n → αψ2 (2αψI(θ∗)− I)

−1 I(θ∗) (24)

The asymptotic variance of the implicit SGD estimator sat-
isfies,

(1/an)Vim
n → αψ2 (2αψI(θ∗)− I)

−1 I(θ∗) (25)

Therefore, both estimators have the same asymptotic effi-
ciency.

Proof. We begin with the SGD procedure and omit the su-
perscript for notational convenience. Start with Equation
(6) and take variances on both sides:

Vn = Vn−1 + a2nVar (ynxn) + a2nVar
(
h(θᵀn−1xn)xn

)
+ 2anCov (θn−1, ynxn)

− 2anCov
(
θn−1, h(θᵀn−1xn)xn

)
− 2a2nCov

(
ynxn, h(θᵀn−1xn)xn

)
(26)

We proceed to simplify Equation (26) by computing all
variance/covariance terms.

Var (ynxn) = ψ2I(θ∗) + Var (zn(θ∗;x))

Var
(
h(θᵀn−1xn)xn

)
= Var (zn(θn−1;x))

Cov (θn−1, ynxn) = 0

Cov
(
θn−1, h(θᵀn−1xn)xn

)
= ψI(θ∗)Vn−1 +Un−1

Cov
(
ynxn, h(θᵀn−1xn)xn

)
= Cov (zn(θ∗;x), zn(θn−1;x))

where we defined Un = Cov (θn, εn). We can now
rewrite Equation (26) as

Vn = (I − anB) Vn−1 + a2n(ψ2I(θ∗) + ∆n) (27)

where we have defined B = 2ψI(θ∗) and the remainder
matrix

∆n =Var (zn(θ∗;x)) + Var (zn(θn−1;x))−
− 2Cov (zn(θ∗;x), zn(θn−1;x))− (2/an)Un−1

=Var (zn(θn−1;x)− zn(θ∗;x))− (2/an)Un−1

By Assumptions (4.1)-(bi) and (bii) we establish that∑
i ai||∆n|| < ∞. Therefore, we can directly apply

Corollary (4.1) to obtain

(1/an)Vsgd
n → αψ2 (2αψI(θ∗)− I)

−1 I(θ∗)

For the implicit updates, we follow the same approach.
Taking the variance on both sides of the implicit procedure
(7) yields

(I + anB)Vn = Vn−1 + a2n(ψ2I(θ∗) + ∆im
n ) (28)

where we set

∆im
n = Var (zn(θ∗;x))−Var (zn(θn;x))− (2/an)Un

Thus, by Assumptions (4.1)-(bi) and (biii) we establish
that

∑
i ai||∆

im
n || < ∞ and using the approximation

(I+anB)−1 = I−anB+O(an), we can apply Corollary
(4.1) on (28) to finally get

(1/an)Vim
n → αψ2 (2αψI(θ∗)− I)

−1 I(θ∗)

Similar forms to the asymptotic variance of Theorem 4.2
have been discovered before. For example, assume a one-
dimensional normal model (p = 1) where xn = 1, an =
α/n and yn|xn ∼ N (θ∗, σ2). In our notation, ψ = σ2,
h(u) = u and I(θ∗) = 1/σ2. Thus, the asymptotic vari-
ance in (24) becomes nV sgd

n → α2σ2/(2α−1). This form
of asymptotic variance, which by Theorem 4.2 holds for
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the implicit procedure as well, was first proved by Sacks
(1958) and has since been rediscovered multiple times. 6

We can also confirm that the asymptotic variance in
Theorem 4.2 is larger than the variance of the max-
imum likelihood estimator (MLE) defined as θmle

n =
arg maxθ

∑n
i=1 `(θ; yi,xi). Standard theory suggests that

the MLE is asymptotically optimal as an estimator and
that
√
nθmle

n has variance I(θ∗)−1 for large n. Let c =
αψ > 0, then the variance of

√
nθsgdn and of

√
nθimn is

given by c2(2cI(θ∗) − I)−1I(θ∗) ≥ I(θ∗)−1 for any
c > 0,7 thus showing that both estimators (standard SGD
and implicit) are not optimal. However, we can still uti-
lize the variance formula to derive optimal learning rates.
Note that the eigenvalues of the variance of both estima-
tors are given by c2λi/(2cλi − 1) where λi are the eigen-
values of I(θ∗). This formula could then be used to
pick optimal learning rates according to an appropriate cri-
terion. For example, if we would like to minimize the
trace of the SGD asymptotic variance then we should pick
ĉ = arg minc

∑
i c

2λi/(2cλi−1) and α̂ = ĉ/ψ. Of course,
the λi’s are unknown in general and thus we would need
to estimate them from data. Using our theory in order to
develop optimal learning rates, especially for the implicit
procedure, will be the focus of future work.

4.3. Stability

We simplify the bias recursions (19) and (20) by ignoring
the remainder terms and by considering a simpler form as
follows:

bsgdn = (I − anψI(θ∗))bsgdn−1 = P n
1b0

bimn = (I + anψI(θ∗))−1bimn−1 = Qn
1b0 (29)

where P n
1 =

∏n
i=1(I − aiψI(θ∗)), Qn

1 =
∏n
i=1(I +

aiψI(θ∗))−1, and b0 denotes the initial bias from a com-
mon starting point θ0. Thus, the simplified form actually
describes the effect of the starting point θ0 on the estimates
θn after n iterations. Also, let eig(A) be the set of eigen-
values of a matrix A, and let λ(p) = max{eig(I(θ∗))},
λ(1) = min{eig(I(θ∗))} be the maximum and minimum
eigenvalues of the Fisher information matrix respectively.
Note that, P n

1 → 0 and Qn
1 → 0 (based on the proof of

Lemma 4.1) and thus both methods are asymptotically sta-
ble i.e., both will converge, in theory, to the true parameter
vector regardless of the starting point. However, we are
interested in deviations of the standard and implicit SGD

6 Sacks (1958) proved normality of θsgdn with variance
(1/n)α2σ2(2aM ′(θ∗) − 1)−1, under certain conditions on the
regression function M(θ) = E (yn| θ), but without requiring a
normal distributional assumption of yn. See also (Nemirovski
et al., 2009), page 1578, for similar variance results but for gen-
eral strongly-convex objective functions.

7 To clarify, byA ≥ B we mean thatA−B is a nonnegative-
definite matrix.

methods as captured here by the empirical bias. Based on
the simplified bias equations (29), this information can be
summarized by the eigenvalues of the matrices P n

1 andQn
1

through the following lemma.

Lemma 4.2. If an = α/n and αψλ(p) > 1, then the max-
imum possible eigenvalue of a matrix P n

1 is given by

max
n>0

max{eig(P n
1 )} = Θ(2αψλ(p)/

√
αψλ(p)) (30)

For the implicit method,

max
n>0

max{eig(Qn
1 )} = O(1) (31)

Lemma 4.2 shows that in the standard SGD procedure, the
effect from the initial conditions can be amplified in an ex-
ponentially large way before fading out, if the learning rate
is misspecified (i.e., if α > 1/ψλ(p)). This sensitivity of
the standard SGD procedure is well-known and requires
problem-specific considerations to be avoided in practice.
However, it is less well-known that the effects of the initial
conditions monotonically decrease in the implicit method
as shown in Equation (31). Rather remarkably, this robust-
ness property of the implicit method holds under arbitrary
misspecifications of the learning rate.

5. Experiments
We illustrate the different aspects of our theory on three
separate sets of experiments. In Section 5.1, we work on
a simple bivariate Poisson regression model and verify the
variance asymptotics in Theorem 4.2, both analytically and
in simulation. In Section 5.2, we compare convergence and
stability of the standard and implicit SGD procedures on a
larger Normal model. Last, in Section 5.3 we implement
an implicit learning algorithm for SVM and compare with
a standard SGD algorithm on a typical classification task.

5.1. Bivariate Poisson model

We first illustrate on a bivariate Poisson model which is
simple enough to derive the relevant formulas analytically.
We assume binary features such that, for any iteration n,
xn is either (0, 0)ᵀ, (1, 0)ᵀ or (0, 1)ᵀ with probabilities 0.6,
0.2 and 0.2 respectively. We set θ∗ = (θ1, θ2)ᵀ for some
θ1, θ2, and assume yn ∼ Poisson(eθ

∗ᵀxn). In our GLM
notation, p = 2, ψ = 1 and h(u) = eu. By Proposition 3.1
it easily follows that,

I(θ∗) = E (h′(θ∗ᵀxn)xnx
ᵀ
n) = 0.2

(
eθ1 0
0 eθ2

)
We set an = 10/3n which implies α = 10/3 using
Assumption 4.1. For notational convenience, let c =
(2α)0.2 = 4/3. Setting θ1 = log 2 and θ2 = log 4, the
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Table 2. Sample quantiles of ||θsgd20000 − θ∗|| and ||θim20000 − θ∗||.
Values that are larger than 1e3 are marked with “*”.

QUANTILES

METHOD 25% 50% 75% 85% 95% 100%
SGD 0.01 1.3 435.8 * * *
IMPLICIT 0.00 0.01 0.02 0.02 0.03 0.04

asymptotic variance Σ = α(2αI(θ∗) − I)−1I(θ∗) in
Theorem 4.2 is equal to,

Σ =
c

2

(
eθ1

ceθ1−1 0

0 eθ2

ceθ2−1

)
=

(
0.8 0
0 0.62

)
(32)

Next, we obtain 100 independent samples of θsgdN and θimN
for N = 20000 iterations through the procedures defined
in (6) and (7), and compute their empirical variances. We
observe that the implicit estimates are particularly stable
and have an empirical variance that satisfies,

(1/aN )V̂ar(θimN ) =

(
0.86 −0.06
−0.06 0.64

)
and is close to the theoretical value calculated in (32). In
contrast, the standard SGD estimates are quite unstable and
their L2 distance to the true values θ∗ are orders of mag-
nitude larger than the implicit ones (see Table 2 for sample
quantiles). By Lemma 4.2, such deviations are expected
for standard SGD because the largest eigenvalue of I(θ∗)
is λ(2) = 0.8 satisfying αψλ(2) = 8/3 > 1. Note how-
ever, that it is fairly straightforward to stabilize the standard
SGD procedure in this problem, for example by modifying
the learning rate to an = min{0.15, 10/3n}. In general,
when the optimization problem is well-understood, it is
easy to determine the learning rate schedule that avoids out-
of-band explicit updates; in practice, we are working with
problems that are not so well-understood and determining
the correct learning rate schedule may take substantial ef-
fort, especially in multi-dimensional settings. The implicit
method eliminates this overhead: a wide range of learning
rate schedules leads to convergence on all problems.

5.2. Multivariate Normal model

In our next experiment, we wish to validate our theory
through a toy problem of normal linear regression follow-
ing (Xu, 2011). We assume θ∗ = (1, 1, · · · , 1)ᵀ ∈ R20 to
be the ground-truth (i.e., p = 20 parameters). At each iter-
ation n, the feature vector xn is sampled i.i.d. from a mul-
tivariate normal xn ∼ Np(0,V x) for a fixed matrix V x.8

The outcome yn is then sampled from a normal as yn|xn ∼
8The covariance matrix is designed to have eigenvalues

almost-uniformly in the interval [0.2, 1.0] and one larger at the
order of 0.1p.

N (θ∗ᵀxn, 1). For each procedure, i.e., standard and im-
plicit SGD, we collect iterates θn for n = 1, 2, · · ·N . We
also repeat the procedure M times so that we finally have
M samples of θsgdn and θimn , similar to Section 5.1.

Figure 1. Standard SGD (dark shade, “x”) and implicit SGD (light
shade, “*”) procedures on normal linear regression. The figure
shows for each procedure, the (i) 2.5%/97.5% quantiles of log-
bias over iterations (top-left) (ii) 2.5%/97.5% quantiles of log-bias
over learning-rate scaling (bottom-left), (iii) L2 norm of empiri-
cal minus theoretical variance over iterations (top-right), and (iv)
trace of empirical variance over iterations (bottom-right).

Figure 1 shows results for a maximum N = 1000 itera-
tions and M = 2000 samples. In the top-left subfigure, we
plot the log-norm of the bias over N iterations, where for
each method we plot two lines corresponding to the 2.5%
(lower line) and 97.5% (upper line) over all M samples.
We observe that the implicit method is slightly slower to
converge but eventually obtains a similar rate of conver-
gence to standard SGD, as predicted by Theorem 4.1. In
the bottom-left figure, we plot the log-norm of the bias
achieved by θN , over M samples for each method and for
different learning rates (x-axis). In particular, we scale the
baseline learning-rate up to being 3x the optimal value as
calculated for the standard SGD. We observe that the bias
of the standard SGD method is significantly affected by this
scaling whereas the implicit method remains robust. In par-
ticular, the maximum observed bias of the implicit method
remains constant whereas the minimum bias is actually im-
proving when scaling the learning rate.

In the top-right figure, we plot for each method theL2 norm
of the empirical variance (computed over M = 2000 sam-
ples) subtracted from the one predicted by Theorem 4.2,
and thus observe that both variances are converging to the
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Table 3. Test errors of standard and implicit SGD methods on the
RCV1 dataset benchmark. Training times are roughly compa-
rable. Best scores, for a particular loss and regularization, are
bolded.

REGULARIZATION (λ)

LOSS 1E-5 1E-7 1E-12

HINGE SGD 4.65% 3.57% 4.85%

IMPLICIT 4.68% 3.6% 3.46%
LOG SGD 5.23% 3.87% 5.42%

IMPLICIT 4.28% 3.69% 4.01%

theoretical one. Finally, the bottom-right figure shows the
trace of the variances of the iterates θn for every method.
This plot shows that the implicit method exhibits smaller
empirical variance of the iterates, thus achieving an in-
teresting trade-off: it gives up bias at the early stages
of the iteration (see top-left) in order to compensate for
more robustness (bottom-left) and smaller empirical vari-
ance (bottom-right). Asymptotically and assuming conver-
gence, both methods provide identical estimators in terms
of bias (top-left) and variance (top-right) as predicted by
Theorems 4.1 and 4.2.

5.3. Additional experiments on SVM model

We are also interested to test the performance of the im-
plicit procedure outside the family of GLMs. For that pur-
pose, we implement an implicit online learning procedure
for a SVM model and compare it to a standard SGD method
on the RCV1 benchmark.9Some results using variations
on the loss functions and the regularization parameter are
shown in Table 3. A complete understanding of these re-
sults is still missing, however we do observe that the im-
plicit method fares well compared to standard SGD and, at
the same time, remains remarkably robust to misspecifica-
tion. For example, note that in all experiments the standard
SGD method degrades in performance for small or large
regularization (in these experiments, the regularization pa-
rameter λ also affects the learning rate such that, larger λ
means larger learning rates). However, the implicit method
maintains a more stable performance accross experiments
and, interestingly, it achieves best performance under min-
imal regularization using the hinge loss.

6. Conclusion
We study the statistical properties of explicit and implicit
updates for fitting GLM models using SGD. In this model
family, we derive a computationally efficient algorithm to
perform the implicit updates. Furthermore, we derive for-

9 We used Bottou’s SVM SGD implementation available at
http://leon.bottou.org/projects/sgd. Our implicit SVM is available
at the first author’s website.

mulas for the asymptotic bias and variance of both updates
and show the fundamental bias/variance trade-off achieved
by the implicit method. In small samples, the implicit es-
timates are more biased than the explicit ones but exhibit
smaller empirical variance and are substantially more ro-
bust to misspecification. In the limit, both methods are sta-
tistically equivalent: they are both unbiased at the same
convergence rate and enjoy the same statistical efficiency.
Our theoretical results thus suggest that the implicit method
could safely be the method of choice in estimating large-
scale GLMs, especially when robustness is a concern. Our
experiments confirm our theory and, more broadly, sug-
gest that the implicit method can be a competitive method
in large-scale machine learning tasks, requiring less tuning
of learning-rate or regularization parameters. Future work
will focus on the implicit method towards optimal learning
rate schedules and a more detailed characterization of its
robustness properties.
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Convergence of implicit RM procedure in quadratic
mean.

Our proof is an adaptation of the original proof of conver-
gence of the RM procedure (Robbins & Monro, 1951) and
so we follow the same naming conventions for easy refer-
ence.

Let bn = E (θn − θ∗)2, dn = E ((θn − θ∗)M(θn)), en =
E
(
y2n
)

and fn = E
(
M(θn)2

)
. Using the definition of the

implicit RM procedure (2) we obtain

bn = bn−1 − 2anE ((θn−1 − θ∗)yn) + a2nen (33)

Furthermore, by (2) and Assumption (2.2) we have
E (θn−1|θn) = θn + anM(θn). Therefore,

E ((θn−1 − θ∗)yn) =E ([θn − θ∗ + anM(θn)]M(θn))

=dn + anfn (34)

We substitute (34) into (33) and get

bn = bn−1 − 2andn + a2nen − 2a2nfn

The term a2nfn is the only part that differentiates this proof
with the original one in (Robbins & Monro, 1951). Since,∑
a2n < ∞, essentially, this additional term has no effect,

and the original analysis still carries through unaltered. We
repeat the arguments here for completeness.

http://leon.bottou.org/projects/sgd
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Let gn = en − 2fn and sum up all the terms bn to obtain

bn = b0 − 2

n∑
j=1

ajdj +

n∑
j=1

a2jgj (35)

By Assumptions (2.1)-(2.3) it holds
∑
a2jdj < ∞ and

bn ≥ 0 for all n. Therefore, we conclude that
∑∞
j=1 ajdj is

finite. Thus, the series bn is converging to a finite value i.e.,
bn → b ≥ 0. Now, the goal is to construct a nonnegative
series kn such that

dn ≥ knbn and
∞∑
ajkj =∞ (36)

If this is possible, then
∑
ajkjbj ≤

∑
j ajdj and so it is

finite. Since
∑
j ajkj diverges then it must be that bn → 0

in the limit. This construction is identical to (Robbins &
Monro, 1951), page 403. In particular, by definition of (2)
and Assumption (2.2), we can find a constant K > 0 such
that P (|θn − θ∗| ≤ An) = 1, where An = K

∑n
j=1 aj .

Then, kn can be defined as

kn = inf{M(x)

x− θ∗
: 0 < |x− θ∗| ≤ An} (37)

It can be shown that kn satisfies the requirements in (36)
(see pages 403-405 of (Robbins & Monro, 1951), Equa-
tion (24) and Theorem 2, in particular). Intuitively, this
is because (for large enough n), kn ≤ M ′(θ∗) by defini-
tion and dn ≈ M ′(θ∗)bn, and thus the first requirement of
(36) is fulfilled. Furthermore, by the monotonicity of M(·)
(Assumption (2.3)), kn ≥ δM

′(θ∗)
An

for some fixed constant
δ > 0, which satisfies the second requirement of (36) by
Assumption (2.1).

Proof for Proposition 3.1 (GLM moments)

Proof. For convenience, let η = xᵀθ and let f(y; η, ψ)
denote the density of the GLM model. The moment-
generating function of y is given by

M(n) = E
(
ety
)

=

∫
etyf(y; η, ψ)dy

=

∫
e
b(η+tψ)−b(η))

ψ f(y; η + tψ, ψ)dy

= exp

{
b(η + tψ)− b(η)

ψ

}
Thus, the expected value is E (y|x) = M ′(0) = b′(η).
Furthermore, by definition, E (y|x) = h(η) and this
concludes Part (a). For Part (b), note that E

(
y2
∣∣x) =

M ′′(0) = M ′(0)b′(η) +M(0)b′′(η)ψ and so Var (y|x) =
E
(
y2
∣∣x) −M ′(0)2 = ψM(0)b′′(η) = ψh′′(η). For Part

(c) note that the log-likelihood is

`(θ; y,x) = log f(y; η, ψ) = (1/ψ)(ηy − b(η))

Thus,

∇`(θ; y,x) =(1/ψ)(y − b′(η))∇θη
=(1/ψ) (y − h(xᵀθ))x (38)

Subsequent differentiation yields Part (d).

Proof for Lemma 4.1

Proof. For convenience, we make the following defini-
tions. Let Γn = I − anBn and the partial products P n

i =

ΓnΓn−1 · · ·Γi =
∏i
k=t Γk, for i ≤ t, and P t+1

n = I .
Note that it holds that ||P n

i || ≤ Ke−γ
∑n
i=1 ai for suit-

able constants K, γ > 0 (Polyak & Juditsky, 1992; ?).
Let A(n) = γ

∑n
i=1 ai so that ||P n

i || ≤ Ke−γA(n)eγA(i).
Also, A(n) is increasing and A(n) → ∞ and so P n

i → 0
as t→∞, and for a fixed i.

The matrix recursion in Lemma 4.1 can now be rewritten
as Xn = ΓnXn−1 + anC + anDn and, by performing
successive multiplications we get:

Xn =(ΓnΓn−1 · · ·Γ1) ·X0 + anC + anDn

+ an−1ΓnC + an−1ΓnDn−1 · · ·
+ a1Γn · · ·Γ2C + a1Γn · · ·Γ2D1

=P n
1X0 + S0

n + S1
n (39)

where we have defined S0
t =

∑n
i=1 aiP

n
i+1C and S1

t =∑n
i=1 aiP

n
i+1Di. We have already established that P n

1 →
0. Out proof strategy will be to prove that S0

t → B−1 and
that S1

t → 0.

By definition it holds that,

n∑
i=1

aiP
n
i+1 = B−1n +

n∑
i=1

P n
i (B−1i−1 −B

−1
i ) (40)

To see this, note that anI = (I − Γn)B−1n . So,∑n
i=1P

n
i (B−1i−1 − B

−1
i ) = (I − Γn)B−1n + Γn(I −

Γn−1)B−1n−1 + · · · + ΓnΓn−1 · · ·Γ2(I − Γ1)B−11 =

P t+1
n anI + P n

nan−1I + · · · + P 2
na1I =

∑n
i=1 aiP

n
i+1

For t = 1 this reduces to a1P
1
2 = B−11 + P 1

1E1 =∑n
i=1 aiP

n
i+1. Thus, for the last summation in Equa-

tion (40) we have, ||
∑
i=1P

n
i (B−1i−1 − B−1i )|| ≤

Ke−γA(n)
∑
i e
γA(i)O(a2i ) Note that, sinceBn converges,

||B−1i−1−B
−1
i || = ||B

−1
i (Bi−Bi−1)B−1i−1|| = O(||Bi−

Bi−1||) = O(a2i ). Since
∑
iO(a2i ) < ∞ and eγA(i)

is positive, increasing and diverging, by Kronecker’s
lemma we obtain

∑
iO(a2i )e

γA(i) = o(eA(n)). Thus,∑n
i=1P

n
i (B−1i−1 −B

−1
i )→ 0. Therefore it holds:

lim
t→∞

n∑
i=1

aiP
n
i+1 = B−1 (41)
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Thus, we have established that S0
t → B−1C. Further-

more, since
∑
i ai||Di|| < ∞, by applying Kronecker’s

lemma once more on the sum
∑
i aiP

n
i+1Di, we obtain

that S1
t → 0. By substitution in Equation (39), we finally

get thatXn → B−1C.

For the second part and the recursion

Y n = (I + anBn)−1Y n−1 + an(C +Dn) (42)

the proof is almost identical. For an intuition, note that
for small enough an it holds (I + anBn)−1 = (I −
anBn) + O(a2n) and so the result should follow from the
aforementioned analysis. For a complete formal proof,
we just need to (re)define Γn = (I + anBn)−1 and
show that anΓn + an−1ΓnΓn−1 + · · · + a1Γn · · ·Γ1 =
B−1n +

∑n
i P

n
i (B−1i−1 − B

−1
i ), similar to the case be-

fore (the difference in this recusion to the previous one
is that this sum has Γn in all terms). To see why this
is true, note that I − Γn = anBnΓn and so the right-
hand side of the above equation is re-written as B−1n +∑n
i P

n
i (B−1i−1 −B

−1
i ) = B−1n (I − Γn) + ΓnB

−1
n−1(I −

Γn−1) + · · · = anΓn + an−1ΓnΓn−1 · · · as needed. Not-
ing that, ||(I + anBn)−1|| = O(||I − anBn||) completes
the proof.

Finally, note that the Lemma also holds Xn,C,Dn are
vectors; the proof is identical.

Proof for Lemma 4.2

Proof. We will use the following intermediate result:

max
n>0
|
n∏
i=1

(1− b/i)| ≈

{
1− b if 0 < b < 1
2b√
2πb

if b > 1

The first case is obvious. For the second case, b > 1, as-
sume without loss of generality that b is an even integer.
Then the maximum is given by

(b− 1)(b/2− 1) · · · (2− 1) =
1

2

(
b

b/2

)
= Θ(2b/

√
2πb)

where the last approximation follows from Stirling’s for-
mula. The stability result on the explicit SGD updates of
Lemma 4.2 follows immediately by using the largest eigen-
valueψλ(p) ofψI(θ∗). For the implicit SGD updates, sim-
ply note that the eigenvalues of (I+anJ)−1 are less than 1,
for any an > 0 and any nonnegative-definite matrix J .
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