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14.1 Introduction

Parameter estimation by optimization of an objective function, such as maximum-likelihood
and maximum a posteriori, is a fundamental idea in statistics and machine learning (Fisher,
1922, Lehmann and Casella, 2003, Hastie et al., 2011). However, widely used optimization-
based estimation algorithms, such as Fisher scoring, the Expectation-Maximization (EM)
algorithm, and iteratively reweighted least squares (Fisher, 1925, Dempster et al., 1977,
Green, 1984), are not scalable to modern data sets with hundreds of millions of data points
and hundreds or thousands of covariates (National Research Council, 2013).

To illustrate, let us consider the problem of estimating the true parameter value θ� ∈
R

p from an i.i.d. sample D = {Xn, Yn}, for n = 1, 2, . . . , N ; Xn ∈ R
p is the covariate

vector, and Yn ∈ R
d is the outcome distributed conditionally on Xn according to the known
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distribution f and unknown model parameters θ�,

Yn|Xn ∼ f(·;Xn, θ�)

We assume that the data points (Xn, Yn) are observed in sequence (streaming data). The
log-likelihood, log f(Y ;X, θ), as a function of the parameter value θ given a data point

(X,Y ), will be denoted by �(θ;Y,X); for brevity, we define �(θ;D) =
∑N

n=1 �(θ;Xn, Yn) as
the complete data log-likelihood.

Traditional estimation methods are typically iterative and have a running time com-
plexity that ranges between O(Np3) and O(Np) in worst cases and best cases, respectively.
Newton–Raphson methods, for instance, update an estimate θn−1 of the parameters through
the recursion

θn = θn−1 −H−1
n−1∇�(θn−1;D) (14.1)

where Hn = ∇∇�(θn;D) is the p × p Hessian matrix of the complete data log-likelihood.
The matrix inversion and the likelihood computation over the data set D imply complexity
O(Np2+ε), which makes the algorithm unsuited for estimation with large data sets. Fisher
scoring replaces the Hessian matrix in Equation 14.1 with its expected value over a data
point (Xn, Yn), that is, it uses the Fisher information matrix I(θ) = −E (∇∇�(θ;Xn, Yn)).
The advantage of this method is that a steady increase in the likelihood is possible because
the difference

�(θ+ εΔθ;D)− �(θ;D) ≈ ε �(θ;D)ᵀI(θ)−1�(θ;D) +O(ε2)

can be made positive for an appropriately small value ε > 0, because I(θ) is positive definite.
However, Fisher scoring is computationally comparable to Newton–Raphson’s, and thus it is
also unsuited for estimation with large data sets. Other general estimation algorithms, such
as EM or iteratively reweighted least squares (Green, 1984), have similar computational
constraints.

Quasi-Newton methods are a powerful alternative that is widely used in practice. In
quasi-Newton methods, the Hessian in the Newton–Raphson algorithm is approximated by
a low-rank matrix that is updated at each iteration as new values of the gradient become
available. This yields an algorithm with complexity O(Np2), or O(Np) in certain favorable
cases (Hennig and Kiefel, 2013).

However, estimation with large data sets requires complexity that scales linearly with
N , the number of data points, but sublinearly with p, the number of parameters. The first
requirement on N seems hard to overcome because each data point carries information
for θ� by the i.i.d. data assumption. Therefore, gracious scaling with p is necessary.

Such computational requirements have recently sparked interest in procedures that
utilize only first-order information, that is, methods that utilize only the gradient function.
A prominent procedure that fits this description is stochastic gradient descent (SGD),
defined through the iteration

θsgdn = θ
sgd
n−1 + an∇�(θsgdn−1;Xn, Yn) (14.2)

We will refer to procedure 14.2 as SGD with explicit updates, or explicit SGD for short,
because the next iterate θsgdn can be computed immediately after the new data point
(Xn, Yn) is observed. The sequence an > 0 is known as the learning rate sequence, typically
defined such that nan → α > 0, as n → ∞. The parameter α > 0 is the learning rate
parameter, and it is crucial for the convergence and stability of explicit SGD.

From a computational perspective, the SGD procedure (Equation 14.2) is appealing
because the expensive inversion of p× p matrices, as in Newton–Raphson, is replaced by a
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single sequence of scalars an > 0. Furthermore, the log-likelihood is evaluated at a single
data point (Xn, Yn), and not on the entire data set D.

From a theoretical perspective, the explicit SGD procedure is justified because
Equation 14.2 is a special case of the stochastic approximation method of Robbins and
Monro (1951). By the theory of stochastic approximation, explicit SGD converges to a
point θ∞ that satisfies E (∇�(θ∞;X,Y)) = 0; under typical regularity conditions, θ∞ is
exactly the true parameter value θ�. As a recursive statistical estimation method, explicit
SGD was first proposed by Sakrison (1965) in a simple second-order form, that is, using
the Fisher information matrix in iteration (Equation 14.2); the simplicity of SGD has also
made it very popular in optimization and machine learning with large data sets (Le Cun
and Bottou, 2004, Zhang, 2004, Spall, 2005).∗

However, the remarkable simplicity of explicit SGD comes at a price, as the SGD
procedure requires careful tuning of the learning rate parameter α. For small values of
α, the iterates θsgdn will converge very slowly to θ� (large bias), whereas for large values of
α, the iterates θsgdn will either have a large asymptotic variance (with respect to random
data D), or even diverge numerically. In large data sets with many parameters (large p),
the balance between bias, variance, and stability is very delicate, and nearly impossible to
achieve without appropriately modifying Equation 14.2.

Interestingly, the simple modification of explicit SGD defined through the iteration

θimn = θimn−1 + an∇�(θimn ;Xn, Yn) (14.3)

can resolve its stability issue virtually at no cost. We will refer to procedure 14.3 as implicit
stochastic gradient descent, or implicit SGD for short (Toulis et al., 2014, Toulis and Airoldi,
2015); Equation 14.3 is implicit because the next iterate θimn appears on both sides of the
equation. This equation is a p-dimensional fixed-point equation, which is generally hard to
solve. However, for a large family of statistical models, it can be reduced to a one-dimensional
fixed-point equation; we discuss computational issues of implicit SGD in Section 14.3.4.

The first intuition for implicit SGD is obtained using a Taylor expansion of the implicit
update (Equation 14.3). In particular, assuming a common point θsgdn−1 = θimn−1 = θ, a Taylor
expansion of Equation 14.3 around θimn−1 implies

Δθimn =
(
I+ anÎ(θ;Xn, Yn)

)−1

Δθsgdn +O(a2n) (14.4)

where:
Δθn = θn − θn−1 for both explicit and implicit methods
Î(θ;Xn, Yn) = −∇∇�(θ;Xn, Yn) is the observed Fisher information matrix
I is the p× p identity matrix

Thus, implicit SGD uses updates that are a shrinked version of the explicit ones; the
shrinkage factor in Equation 14.4 depends on the observed information up to the nth data
point, and is similar to shrinkage in ridge regression.

Naturally, implicit SGD has also a Bayesian interpretation. In particular, if the log-
likelihood is continuously differentiable, then the update in Equation 14.3 is equivalent to
the update

θimn = arg max
θ∈Rp

{
an�(θ;Xn, Yn)−

1

2
||θ− θimn−1||2

}
(14.5)

∗Recursive estimation methods using stochastic approximation were originally developed for problems
with streaming data. However, these methods are more broadly applicable to estimation with a static data
set. Asymptotically, these two scenarios are equivalent, with the estimates converging to the true parameter
value θ�. Estimates with a static data set (that is, with a finite sample) converge instead to the point that
minimizes some predefined empirical loss, for example, based on the likelihood.
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The iterate θimn from Equation 14.5 is the posterior mode of the following Bayesian model:

θ|θimn−1 ∼ N (θimn−1, anI)

Yn|Xn, θ ∼ f(·;Xn, θ) (14.6)

where N denotes the normal distribution. Therefore, the learning rate an relates to the
information received after n data points have been observed, and encodes our trust on
the current estimate θimn−1. The Bayesian formulation (Equation 14.6) demonstrates the
flexibility of implicit SGD. For example, depending on the parameter space of θ�, the
Bayesian model in Equation 14.6 could be different; for instance, if θ� was a scale parameter,
then the normal distribution could be replaced by an inverse chi-squared distribution.
Furthermore, instead of anI as the prior variance, it would be statistically efficient to use the
Fisher information matrix (1/n)I(θimn−1)

−1, completely analogous to Sakrison’s method—we
discuss these ideas in Section 14.3.5.1.

There is also a tight connection of Equation 14.5 to proximal methods in optimization.
For example, if we replaced the stochastic component �(θ;Xn, Yn) in Equation 14.5 with
the complete data log-likelihood �(θ;D), then procedure 14.5 would be essentially the
proximal point algorithm of Rockafellar (1976) that applies to deterministic settings. This
algorithm is known for its numerical stability, and has been generalized through the idea
of splitting algorithms (Lions and Mercier, 1979); see Parikh and Boyd (2013) for a
comprehensive review. The convergence of proximal methods with a stochastic component,
as in Equation 14.5, has been analyzed recently—under various forms and assumptions—
by Bertsekas (2011), Ryu and Boyd (2014), and Rosasco et al. (2014). From a statistical
perspective, Toulis and Airoldi (2014) derived the asymptotic variance of θsgdn and θimn
as estimators of θ�, and provided an algorithm to efficiently compute Equation 14.5 for
the family of generalized linear models—we show a generalization of this result in Section
14.3.4. In the online learning literature, regret analyses of implicit methods have been given
by Kivinen et al. (2006) and Kulis and Bartlett (2010). Further intuitions for proximal
methods (Equation 14.5) have been given by Krakowski et al. (2007) and Nemirovski et al.
(2009), who showed that proximal methods can fit better in the geometry of the parameter
space.

Arguably, the normalized least mean squares (NLMS) filter (Nagumo and Noda, 1967)
was the first statistical model that used an implicit update as in Equation 14.3, and was
shown to be robust to input noise (Slock, 1993). Two other recent stochastic proximal
methods are Prox-SVRG (Xiao and Zhang, 2014) and Prox-SAG (Schmidt et al., 2013,
section 6). The main idea in both methods is to replace the gradient in Equation 14.5 with an
estimate of the full gradient averaged over all data points that has the same expectation with
the gradient of Equation 14.3 but smaller variance. Because of their operational complexity,
we will not discuss these methods further. Instead, in Section 14.3.5.1, we will discuss
a related proximal method, namely AdaGrad (Duchi et al., 2011a), that maintains one
learning rate for each parameter component, and updates these learning rates as new data
points are observed.

Example 14.1 Consider the linear normal model, Yn|Xn ∼ N (Xᵀ
nθ�, 1). The log-likelihood

for this model is �(θ;Xn, Yn) = − 1
2 (Yn − Xᵀ

nθ�)
2. Therefore, the explicit SGD procedure

will be

θsgdn = θ
sgd
n−1 + an(Yn −Xᵀ

nθ
sgd
n−1)Xn = (I− anXnX

ᵀ
n)θ

sgd
n−1 + anYnXn (14.7)

Equation 14.7 is known as the least mean squares filter (LMS) in signal processing, or as the
Widrow–Hoff algorithm (Widrow and Hoff, 1960), and it is a special case of explicit SGD.
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The stability problems of explicit SGD become apparent by inspection of Equation 14.7; a
misspecification of an can lead to a poor next iterate θsgdn , for example, when I− anXnX

ᵀ
n

has large negative eigenvalues—we discuss these issues in Section 14.3.2.
The implicit SGD procedure for the linear model is

θimn = θimn−1 + an(Yn −Xᵀ
nθ

im
n )Xn ⇒

θimn = (I+ anXnX
ᵀ
n)

−1θimn−1 + an(I+ anXnX
ᵀ
n)

−1YnXn (14.8)

Equation 14.8 is known as the NLMS filter in signal processing (Nagumo and Noda, 1967).
In contrast to explicit SGD, the implicit iterate θimn is a weighted average between the
previous iterate θimn−1 and the new observation YnXn, which is now stable to misspecifications
of the learning rate an.

14.1.1 Outline

The structure of this chapter is as follows. In Section 14.2, we give an overview of the
Robbins–Monro procedure and Sakrison’s recursive estimation method, which provide the
theoretical basis for SGD methods. In Section 14.3, we introduce a simple generalization
of explicit and implicit SGD, and we analyze them as statistical estimation procedures
for the model parameters θ� after n data points have been observed. In Section 14.3.1,
we give results on the frequentist statistical properties of SGD estimators, that is, their
asymptotic bias and variance across multiple realizations of the data set D. We then
leverage these results to study optimal learning rate sequences an (Section 14.3.3), the loss of
statistical information in SGD, and numerical stability (Section 14.3.2). In Section 14.3.5,
we illustrate three extensions of the SGD methods, in particular: (1) second-order SGD
methods (Section 14.3.5.1), which adaptively approximate the Fisher information matrix;
(2) averaged SGD methods, which use larger learning rates together with averaging of the
iterates; and (3) Monte Carlo SGD methods, which can be applied when the log-likelihood
cannot be efficiently computed. In Section 14.4, we review applications of SGD in statistics
and machine learning, namely, online EM, Markov Chain Monte Carlo (MCMC) posterior
sampling, reinforcement learning, and deep learning.

14.2 Stochastic Approximation

Consider a random variable H(θ) that depends on parameter θ; for simplicity, assume that
H(θ) and θ are real numbers. The regression function, h(θ) = E (H(θ)), is decreasing but
possibly unknown. Robbins and Monro (1951) considered the problem of finding the unique
point θ� for which h(θ�) = 0. They devised a procedure, known as the Robbins–Monro
procedure, in which an estimate θn−1 of θ� is utilized to sample one new data pointH(θn−1);
by definition, E (H(θn−1)| θn−1) = h(θn−1). The estimate is then updated according to the
following rule:

θn = θn−1 + anH(θn−1) (14.9)

The scalar an > 0 is the learning rate and should decay to zero, but not too fast to guarantee
convergence. Robbins and Monro (1951) proved that E

(
(θn − θ�)

2
)
→ 0 if,

(a) E
(
H(θ)2

∣∣ θ) < ∞, for any θ, and

(b)
∑∞

i=1 ai = ∞ and
∑∞

i=1 a
2
i < ∞.
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Extensions to multiple dimensions were soon given by Blum (1954). The necessary
conditions for convergence in such cases are the negative definiteness of the Jacobian of
h, or that H is the stochastic gradient of a function with unique zero (Wei, 1987, Ruppert,
1988b, section 4).

The original proof of Robbins and Monro (1951) is technical but the main idea is
straightforward. Let bn � E

(
(θn − θ�)

2
)

denote the squared error of the iterates in
Equation 14.9; then from iteration (Equation 14.9), it follows:

bn = bn−1 + 2anE ((θn−1 − θ�)h(θn−1)) + a2nE
(
H(θn−1)

2
)

In the neighborhood of θ�, we assume that h(θn−1) ≈ h′(θ�)(θn−1 − θ�), and thus

bn = (1 + 2anh
′(θ�))bn−1 + a2nE

(
H(θn−1)

2
)

(14.10)

For a learning rate an = α/n, using typical techniques in stochastic approximation
(Chung, 1954), we can derive from Equation 14.10 that bn → 0. Furthermore, nbn →
α2σ2(2α|h′(θ�)| − 1)−1, where σ2 � E

(
H(θ�)

2
)
, as shown by several authors (Chung,

1954, Sacks, 1958, Fabian, 1968). Clearly, the learning rate parameter α is critical for the
performance of the Robbins–Monro procedure. Its optimal value is α� = 1/h′(θ�), which
requires knowledge of the true parameter value θ�, and the slope of h at that point. This
optimality result inspired an important line of research on adaptive stochastic approximation
methods, such as the Venter process (Venter, 1967), in which quantities that are important
for the convergence and efficiency of iterates θn (for example, the quantity h′(θ�)) are being
estimated as the stochastic approximation proceeds.

14.2.1 Sakrison’s recursive estimation method

Although initially motivated by sequential experiment design, the Robbins–Monro proce-
dure was soon modified for statistical estimation. Similar to the estimation setup in Section
14.1, Sakrison (1965) was interested in estimating the parameters θ� of a model that
generated i.i.d. observations (Xn, Yn), in a way that is computationally and statistically
efficient. Sakrison first recognized that one could set H(θ) � ∇ log �(θ;Xn, Yn) in the
Robbins–Monro procedure (Equation 14.9), and use the identity E (∇�(θ�;Xn, Yn)) = 0
to show why the procedure will converge to the true parameter value θ�. Sakrison’s
recursive estimation method was essentially the first explicit SGD method proposed in the
literature:

θn = θn−1 + anI(θn−1)
−1∇�(θn−1;Xn, Yn) (14.11)

where an is a learning rate sequence that satisfies the Robbins–Monro conditions of
Section 14.2. The SGD procedure 14.11 is second order because it uses the Fisher
information matrix in addition to the log-likelihood gradient. By the theory of stochastic
approximation, θn → θ�, and thus I(θn) → I(θ�). Sakrison (1965) proved that
nE

(
||θn − θ�||2

)
→ trace(I(θ�)−1), which indicates that estimation of θ� is asymptotically

optimal, that is, it achieves the minimum variance of the maximum-likelihood estimator.
However, Sakrison’s method is not computationally efficient, as it requires an expensive
matrix inversion at every iteration. Still, it reveals that the estimation of the Fisher
information matrix is essential for optimal SGD. Adaptive second-order methods leverage
this insight to approximate the Fisher information matrix, and improve upon first-order
SGD methods.

K23707–C014.tex 248 2015/10/19 5:35pm



Stochastic Gradient Methods for Principled Estimation with Large Data Sets 249

14.3 Estimation with Stochastic Gradient Methods

We slightly generalize the SGD methods in Section 14.1 through the definitions

θsgdn = θ
sgd
n−1 + anC∇�(θsgdn−1;Xn, Yn) (14.12)

θimn = θimn−1 + anC∇�(θimn ;Xn, Yn) (14.13)

where C is symmetric and positive definite, and commutes with I(θ�); adaptive second-order
methods where C is updated at every iteration are discussed in Section 14.3.5.1. The iterate
θsgdn is the explicit SGD estimator of θ� after the nth data point has been observed; similarly,
θimn is the implicit SGD estimator of θ�. The total number of data points, denoted by N ,
will be assumed to be practically infinite. We will then compare the asymptotic variance of
those estimators with the variance of the maximum-likelihood estimator on n data points,
which, under typical regularity conditions, has variance 1

nI(θ�)−1. The evaluation is done
from a frequentist perspective, that is, across multiple realizations of the data set up to
n data points D = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, under the same model f and true
parameter value θ�.

∗

Typically, both SGD methods have two phases, namely the exploration phase and the
convergence phase (Amari, 1998, Bottou and Murata, 2002). In the exploration phase, the
iterates approach θ�, whereas in the convergence phase, they jitter around θ� within a
ball of slowly decreasing radius. We will overview a typical analysis of SGD in the final
convergence phase, where a Taylor approximation in the neighborhood of θ� is assumed
accurate (Murata, 1998, Toulis et al., 2014). In particular, let μ(θ) = E (∇�(θ;Xn, Yn)),
and assume

μ(θn) = μ(θ�) + Jμ(θ�)(θn − θ�) + o(an) (14.14)

where:
Jμ is the Jacobian of the function μ(·)
o(an) denotes a vector sequence with norms of order o(an)

Under typical regularity conditions, μ(θ�) = 0 and Jμ(θ�) = −I(θ�) (Lehmann and Casella,
1998).

14.3.1 Bias and variance

Denote the biases of the two SGD methods with E(θsgdn −θ�) � bsgdn and E(θimn −θ�) � bimn .
Then, by taking expectations in Equations 14.12 and 14.13 we obtain the recursions

bsgdn = (I− anCI(θ�)) bsgdn−1 + o(an) (14.15)

bimn = (I+ anCI(θ�))−1 bimn−1 + o(an) (14.16)

We observe that convergence—the rate at which the two methods become unbiased in
the limit—differs in the two SGD methods. The explicit SGD method converges faster
than the implicit one because ||(I − anCI(θ�))|| < ||(I + anCI(θ�))−1||, for sufficiently
large n, but the rates become equal in the limit as an → 0. However, the implicit method
compensates by being more stable in the specification of the learning rate sequence and the

∗This is an important distinction because, traditionally, the focus in optimization has been to obtain fast
convergence to a parameter value that minimizes the empirical loss, for example, the maximum-likelihood.
From a statistical viewpoint, under variability of the data, there is a tradeoff between convergence to an
estimator and the estimator’s asymptotic variance (Le Cun and Bottou, 2004).
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condition matrix C. Loosely speaking, the bias bimn cannot be much worse than bimn−1 because
(I + anCI(θ�))−1 is a contraction matrix, for any choice of an > 0. Exact nonasymptotic
derivations for the bias of explicit SGD are given by Moulines and Bach (2011), and for the
bias of implicit SGD by Toulis and Airoldi (2014).

Regarding statistical efficiency, Toulis et al. (2014) showed that, if (2CI(θ�) − I/α) is
positive definite, it holds that

nVar(θsgdn ) → α2(2αCI(θ�)− I)−1CI(θ�)Cᵀ

nVar(θimn ) → α2(2αCI(θ�)− I)−1CI(θ�)Cᵀ (14.17)

where α = limn→∞ nan is the learning rate parameter of SGD, as defined in Section 14.1.
Therefore, both SGD methods have the same asymptotic efficiency, which depends on the
learning rate parameter α and the Fisher information matrix I(θ�). Intuitively, the term
(2αCI(θ�)− I)−1 in Equation 14.17 is a factor that shows how much information is lost by
the SGD methods. For example, setting C = I(θ�)−1 and α = 1, implies (2αCI(θ�)−I)−1 =
I, and the asymptotic variance for both estimators is (1/n)I(θ�)−1, that is, it is the minimum
variance attainable by the maximum-likelihood estimator. This is exactly Sakrison’s result
presented in Section 14.2.1.

Asymptotic variance results similar to Equation 14.17, but not in the context of model
estimation, were first studied in the stochastic approximation literature by Chung (1954),
Sacks (1958), and followed by Fabian (1968) and several other authors (see also Ljung et al.,
1992, parts I, II), where more general formulas are possible using a Lyapunov equation.

14.3.2 Stability

Stability has been a well-known issue for explicit SGD (Gardner, 1984, Amari et al.,
1997). In practice, the main problem is that the learning rate sequence an needs to agree
with the eigenvalues of the Fisher information matrix I(θ�). To see this, let us simplify
Equations 14.15 and 14.16 by dropping the remainder terms o(an). It follows that

bsgdn = (I− anCI(θ�))bsgdn−1 = Pn
1 b0

bimn = (I+ anCI(θ�))−1bimn−1 = Qn
1 b0 (14.18)

where Pn
1 =

∏n
i=1(I − aiCI(θ�)), Qn

1 =
∏n

i=1(I + aiCI(θ�))−1, and b0 denotes the initial
bias of the two procedures from a common starting point θ0. The matrices Pn

1 and Qn
1

describe how fast the initial bias b0 decays for both SGD methods. For small-to-moderate
n, the two matrices critically affect the stability of SGD methods. For simplicity, we compare
those matrices assuming rate an = α/n and a fixed condition matrix C = I.

Under such assumptions, the eigenvalues of Pn
1 can be calculated as λ′i =

∏n
j=1(1 −

αλi/j) = O(n−αλi), for 0 < αλi < 1, where λi are the eigenvalues of the Fisher information
matrix I(θ�). Thus, the magnitude of Pn

1 will be dominated by λmax, the maximum
eigenvalue of I(θ�), and the rate of convergence to zero will be dominated by λmin, the
minimum eigenvalue of I(θ�). For stable eigenvalues λ′i, the terms in the aforementioned
product need to be less than 1; therefore, it is desirable that |1−αλmax| ≤ 1 ⇒ α ≤ 2/λmax.
For statistical efficiency, it is desirable that (2αI(θ�) − I) is positive definite, as shown in
Equation 14.17, and so α > 1/(2λmin). In high-dimensional settings, the conditions for
stability and efficiency are hard to satisfy simultaneously because λmax is usually much
larger than λmin. Thus, in explicit SGD, a small learning rate can guarantee stability, but
this comes at a price in convergence, which will be at the order of O(n−αλmin). On the other
hand, a large learning rate increases the convergence rate but it comes at a price in stability.
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In stark contrast, the implicit procedure is unconditionally stable. The eigenvalues of Qn
1

are λ′i =
∏n

j=1 1/(1+αλi/j) = O(n−αλi), and thus are guaranteed to be less than 1 for any

choice of the learning rate parameter α, because (1 + αλi/j)
−1 < 1, for every i and α > 0.

The critical difference with explicit SGD is that it is no longer required to have a small α
for stability because the eigenvalues of Qn

1 are always less than 1.
Based on this analysis, the magnitude of Pn

1 can become arbitrarily large, and thus
explicit SGD is likely to numerically diverge. In contrast, Qn

1 is guaranteed to be bounded
and so, under any misspecification of the learning rate parameter, implicit SGD is
guaranteed to remain bounded. The instability of explicit SGD is well known and requires
careful work to be avoided in practice. In the following section, we focus on the related task
of selecting the learning rate sequence.

14.3.3 Choice of learning rate sequence

An interesting observation about the asymptotic variance results (Equation 14.17) is that,
for any choice of the learning rate parameter α, it holds that

α2(2αCI(θ�)− I)−1CI(θ�)Cᵀ ≥ I(θ�)−1 (14.19)

where A ≥ B indicates that A−B is nonnegative definite for two matrices A and B. Hence,
both SGD methods incur an information loss when compared to the maximum-likelihood
estimator, and the loss can be quantified exactly through Equation 14.17. Such information
loss can be avoided if we set C = I(θ�)−1 and α = 1.∗ However, this requires knowledge of
the Fisher information matrix on the true parameters θ�, which are unknown. The Venter
process (Venter, 1967) was the first method to follow an adaptive approach to estimate the
Fisher matrix, and was later analyzed and extended by several other authors (Fabian, 1973,
Lai and Robbins, 1979, Amari et al., 2000, Bottou and Le Cun, 2005). Adaptive methods
that perform an approximation of the matrix I(θ�) (for example, through a quasi-Newton
scheme) have recently been applied with considerable success (Schraudolph et al., 2007,
Bordes et al., 2009); we review such methods in Section 14.3.5.1.

However, an efficiency loss is generally unavoidable in first-order SGD, that is, when
C = I. In such cases, there is no loss only when the eigenvalues λi of the Fisher information
matrix are identical. When those eigenvalues are distinct, one reasonable way to set the
learning rate parameter α is to minimize the trace of the asymptotic variance matrix in
Equation 14.17, that is, solve

α̂ = argmin
α

∑
i

α2λi

(2αλi − 1)
(14.20)

under the constraint that α > 1/(2λmin), thus making an undesirable but necessary
compromise for convergence in all parameter components. However, the eigenvalues λi are
unknown in practice and need to be estimated from the data. This problem has received
significant attention recently and several methods exist (see Karoui, 2008, and references
within).

Several more options for setting the learning rate are available, due to a voluminous
amount of research literature on learning rate sequences for stochastic approximation and
SGD. In general, the learning rate for explicit SGD should be of the form an = α(αβ+n)−1.
Parameter α controls the asymptotic variance (see Equation 14.17), and a reasonable choice

∗Equivalently, we could have a sequence of matrices Cn that converges to I(θ�)−1, as in Sakrison’s
procedure (Sakrison, 1965).
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is the solution of Equation 14.20, which requires estimates of the eigenvalues of the Fisher
information matrix I(θ�). A simpler choice is to use α = 1/λmin, where λmin is the minimum
eigenvalue of I(θ�); the value 1/λmin is an approximate solution of Equation 14.20 with
good empirical performance (Xu, 2011, Toulis et al., 2014). Parameter β is used to stabilize
explicit SGD. In particular, it normalizes the learning rate to account for the variance
of the stochastic gradient Var (∇�(θn;Xn, Yn)) = I(θ�) + O(an), for points near θ�. One
reasonable value is β = trace(I(θ�)), which can be estimated easily by summing norms of

the score function, that is, β̂ =
∑n

i=1 ||∇�(θi−1;Xi, Yi)||2. This idea is extended to multiple
dimensions by Amari et al. (2000), Duchi et al. (2011b) and Schaul et al. (2012); we discuss
further in Section 14.3.5.1.

For implicit SGD, a learning rate sequence an = α(α+n)−1 works well in practice (Toulis
et al., 2014). As before, α controls statistical efficiency, and we can set α = 1/λmin, as in
explicit SGD. The additional stability term β of explicit SGD is unnecessary in implicit SGD
because the implicit method performs an indirect normalization of the learning rate—this
is similar to shrinkage described in Equation 14.4.

Eventually, tuning the learning rate sequence depends on problem-specific consider-
ations, and there is a considerable variety of sequences that have been employed in
practice (George and Powell, 2006, Schaul et al., 2012). Principled design of learning rates
in first-order SGD remains an important research topic; for example, recent work has
investigated variance reduction techniques (Johnson and Zhang, 2013, Wang et al., 2013), or
even constant learning rates for least-squares models (Bach and Moulines, 2013). Second-
order methods that essentially maintain multiple learning rates, one for each parameter
component, are discussed in Section 14.3.5.1.

14.3.4 Efficient computation of implicit methods

The update in implicit SGD (Equation 14.3) is a p-dimensional fixed-point equation, which
is generally hard to solve. However, in many statistical models, Equation 14.3 can be
reduced to a one-dimensional fixed-point equation, which can be computed very fast using
a numerical root-finding method.

Consider a linear statistical model where �(θ;Xn, Yn) depends on θ only through
the linear term Xᵀ

nθ. A large family of models satisfy this condition: generalized linear
models, generalized additive models, proportional hazards, etc. We denote �(θ;Xn, Yn) =
gn(X

ᵀ
nθ), where we suppressed the dependence of g on Xn, Yn in the subscript n. Then,

∇�(θ;Xn, Yn) = g′n(X
ᵀ
nθ)Xn, and therefore the direction of the gradient of the log-likelihood

is parameter free. It follows that the implicit procedure can be written as

θimn = θimn−1 + anλn∇�(θimn−1;Xn, Yn) (14.21)

where the gradient is now calculated at the previous estimate θimn−1, and λn is an appropriate
scaling. We now derive λn by combining the definition of implicit SGD (Equations 14.3
and 14.21):

θimn−1 + anλn∇�(θimn−1;Xn, Yn) = θimn−1 + an∇�(θimn ;Xn, Yn) ⇒
λng

′
n(X

ᵀ
nθ

im
n−1) = g′n(X

ᵀ
nθ

im
n ) (14.22)

Using Equation 14.21 in 14.22, we get

λn =
g′n

(
Xᵀ

nθ
im
n−1 + anλn||Xn||2g′n(Xᵀ

nθ
im
n−1)

)
g′n(X

ᵀ
nθimn−1)

(14.23)

Equation 14.23 is a one-dimensional fixed-point equation with respect to λn. Thus, the
implicit iterate θimn of Equation 14.3 can be efficiently computed by first obtaining λn from
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Equation 14.23, and then using Equation 14.21. Narrow search bounds for Equation 14.23
are usually available; see, for example, algorithm 1 by Toulis et al. (2014) for implicit SGD
on generalized linear models, and algorithm 2 by Tran et al. (2015b) for implicit SGD on
the Cox proportional hazards model. Fast implementation of implicit SGD methods are
included in the sgd R package (Tran et al., 2015a,b).

14.3.5 Extensions

Here, we illustrate three extensions of the SGD methods: second-order SGD methods, which
adaptively approximate the Fisher information matrix; averaged SGD methods, which use
larger learning rates together with averaging of the iterates; and Monte Carlo SGD, which
can be applied when the log-likelihood cannot be efficiently computed.

14.3.5.1 Second-order methods

Sakrison’s recursive estimation method (Equation 14.11) is the archetype of second-order
SGD, but it requires prior knowledge of the Fisher information matrix I(θ�). Several
methods aim to recursively estimate the Fisher information matrix, and use those estimates
within the main procedure of estimating θ�; such methods are known as adaptive. Early
adaptive methods in stochastic approximation were given by Nevelson and Khasminskĭı
(1973), Wei (1987), and Spall (2000); translated into an SGD procedure, such methods
recursively estimate I(θ�) by fixing a covariate valueXn, perturbing the parameter estimate
θn−1—for example, by taking θn−1 ± εu, where ε > 0 is a small constant and u is a basis
vector—and then sampling outcome Yn, given the fixed covariate and parameter values.
While such methods are very useful when one has control over the data generation process
as, for example, in sequential experiment design, they are impractical for modern estimation
tasks with large data sets.

A simple and effective approach to recursively estimate I(θ�) was developed by Amari
et al. (2000). The idea is to estimate I(θ�) through a separate stochastic approximation
procedure, and use the estimate Î in the procedure for θ� as follows:

În = (1− cn)În−1 + cn∇�(θn−1;Xn, Yn)∇�(θn−1;Xn, Yn)
ᵀ

θn = θn−1 + anÎ−1
n ∇�(θn−1;Xn, Yn) (14.24)

Inversion of the estimate În is relatively cheap through the Sherman–Morrison formula.
This scheme, however, introduces the additional problem of determining the sequence cn in
Equation 14.24. Amari et al. (2000) advocated for a small constant cn = c > 0 determined
through computer simulations.

An alternative approach based on quasi-Newton methods was developed by Bordes
et al. (2009). Their method, termed SGD-QN, approximated the Fisher information matrix
through a secant condition as in the original BFGS algorithm (Broyden, 1965). The secant
condition in SGD-QN is

θn − θn−1 ≈ Î−1
n−1 [∇�(θn;Xn, Yn)−∇�(θn−1;Xn, Yn)] � Î−1

n−1Δ�n (14.25)

where În are kept diagonal. If Ln denotes the diagonal matrix with the ith diagonal element
Lii = (θn,i − θn−1,i)/Δ�n,i, then the update for În is

În ← În−1 +
2

r
(Ln − În−1) (14.26)

whereas the update for θn is similar to Equation 14.24. The parameter r is controlled
internally in the algorithm, and counts the number of times the update (Equation 14.26)
has been performed.
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Another notable second-order method is AdaGrad (Duchi et al., 2011b), which maintains
multiple learning rates using gradient information only. In one popular variant of the
method, AdaGrad keeps a p × p diagonal matrix of learning rates An that is updated
at every iteration; on observing data (Xn, Yn), AdaGrad updates An as follows:

An = An−1 + diag(∇�(θn−1;Xn, Yn)∇�(θn−1;Xn, Yn)
ᵀ) (14.27)

where diag(·) is the diagonal matrix with the same diagonal as its matrix argument.
Estimation with AdaGrad proceeds through the iteration

θn = θn−1 + αA−1/2
n ∇�(θn−1;Xn, Yn) (14.28)

where α > 0 is shared among all parameter components. The original motivation for
AdaGrad stems from proximal methods in optimization, but there is a statistical intuition
why the update (Equation 14.28) is reasonable. In many dimensions, where some parameter
components affect outcomes less frequently than others, AdaGrad estimates the information
that has actually been received for each component. A conservative estimate of this
information is provided by the elements of An in Equation 14.27, which is justified because,
under typical conditions, E (∇�(θ;Xn, Yn)∇�(θ;Xn, Yn)

ᵀ) = I(θ).
All the second-order methods presented so far are explicit; however, they can have

straightforward variants using implicit updates. For example, in the method of Amari et al.
(2000), one can use the implicit update

θn = θn−1 + anÎ−1
n ∇�(θn;Xn, Yn) (14.29)

instead of the explicit one in Equation 14.24. The solution of Equation 14.29 does not
present additional challenges, compared to Section 14.3.4, because inverses of the estimates
În are easy to compute.

14.3.5.2 Averaging

In certain models, second-order methods can be avoided and still statistical efficiency can
be achieved through a combination of larger learning rates an with averaging of the iterates
θn. The corresponding SGD procedure is usually referred to as averaged SGD, or ASGD
for short.∗ Averaging in stochastic approximation was studied independently by Ruppert
(1988a) and Bather (1989), who proposed similar averaging schemes. If we use the notation
of Section 14.2, Ruppert (1988a) considered the following modification of the Robbins–
Monro procedure (Equation 14.9):

θn = θn−1 + anH(θn−1)

θ̄n =
1

n

n∑
i=1

θi (14.30)

where an = αn−c, 1/2 < c < 1, and θ̄n are considered the estimates of θ�, instead of
θn. Under certain conditions, Ruppert (1988a) showed that nVar(θ̄n) → σ2/h′(θ�)

2, where
σ2 = Var (H(θ)| θ = θ�). Therefore, θ̄n achieves the minimum variance that is possible
according to the analysis in Section 14.2.

Ruppert (1988a) gives a nice statistical intuition on why averaging with larger learning
rates implies statistical efficiency. First, write H(θn) = h(θn) + εn, where εn are

∗The acronym ASGD is also used in machine learning to denote asynchronous SGD, that is, a variant
of SGD that can be parallelized on multiple machines. We will not consider this variant here.
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zero-mean independent random variables with finite variance. By solving the recursion 14.9,
we get

θn − θ� =

n∑
i=1

γinaiεi + o(1) (14.31)

where γin = exp{−A(n) + A(i)}, A(m) = K
∑m

j=1 aj is the function of partial sums, and
K is a constant. Ruppert (1988a) shows that Equation 14.31 can be rewritten as

θn − θ� = an

n∑
i=b(n)

γinεi + o(1) (14.32)

where b(n) = �n− nc log n, and �· is the positive integer floor function. When an = a/n,
Ruppert (1988a) shows that b(n) = O(1) and θn − θ� is the weighted average over all noise
variables εn. In this case, there is significant autocorrelation in the series θn, and averaging
actually can make things worse. However, when an = αn−c, for 1/2 < c < 1, θn − θ� is
a weighted average of only O(nc log n) noise variables. In this case, the iterates θ�p1n� and
θ�p2n�, for 0 < p1 < p2 < 1, are asymptotically uncorrelated, and thus averaging improves
estimation efficiency.

Polyak and Juditsky (1992) derive further significant results for averaged SGD, showing
in particular that ASGD can be asymptotically efficient as second-order SGD under certain
conditions (for example, strong convexity of the expected log-likelihood). In fact, ASGD is
usually referred to as the Polyak–Ruppert averaging scheme. Adoption of averaging schemes
for statistical estimation has been slow but steady over the years (Zhang, 2004, Nemirovski
et al., 2009, Bottou, 2010, Cappé, 2011). One practical reason is that a bad selection of the
learning rate sequence can cause ASGD to converge more slowly than classical explicit SGD
(Xu, 2011). Such problems can be avoided by using implicit SGD with averaging because
implicit methods can afford larger learning rates that can speed up convergence. At the
same time using implicit updates in procedure 14.30 still maintains asymptotic efficiency
(Toulis et al., 2015).

14.3.5.3 Monte Carlo stochastic gradient descent

A key requirement for the application of SGD procedures is that the likelihood is easy to
evaluate. However, this is not possible in many situations, for example, when the likelihood
is only known up to a normalizing constant. In such cases, definitions 14.12 and 14.13 cannot
be applied directly because ∇�(θ;X,Y ) = S(X,Y )−Z(θ), and while S is easy to compute,
Z is hard to compute as it entails a multidimensional integral.

However, if sampling from the model is feasible, then a variant of explicit SGD, termed
Monte Carlo SGD (Toulis and Airoldi, 2014), can be constructed to take advantage of
the identity E (∇�(θ�;X,Y )) = 0, which implies E (S(X,Y )) = Z(θ�). Starting from an
estimate θmc

0 , we iterate the following steps for n = 1, 2, . . .:

1. Observe covariate Xn and outcome Yn; compute Sn � S(Xn, Yn).

2. Get m samples Ỹn,i|Xn, θ
mc
n−1 ∼ f(·;Xn, θ

mc
n−1), for i = 1, 2, . . . ,m.

3. Compute statistic S̃n−1 � (1/m)
∑m

i=1 S(Xn, Ỹn,i).

4. Update estimate θmc
n−1 through

θmc
n = θmc

n−1 + anC(Sn − S̃n−1) (14.33)

K23707–C014.tex 255 2015/10/19 5:35pm



256 Handbook of Big Data

This method is valid under typical assumptions of stochastic approximation theory because

it converges to a point θmc
∞ such that E

(
S(X, Ỹ )|θmc

∞

)
= E (S(X,Y )) = Z(θ�), and thus

E (∇�(θmc
∞ , X, Y )) = 0 as required. Furthermore, the asymptotic variance of estimates of

Monte Carlo SGD satisfies

nVar (θmc
n ) → (1 + 1/m) · α2(2αCI(θ�)− I)−1CI(θ�)Cᵀ (14.34)

which exceeds the variance of the typical explicit (or implicit) SGD estimator in Equa-
tion 14.17 by a factor of (1 + 1/m).

In its current form, Monte Carlo SGD (Equation 14.33) is only explicit; an implicit
version would require to sample data from the next iterate, which is technically challenging.
Still, an approximate implicit implementation of Monte Carlo SGD is possible through
shrinkage, for example, through shrinking θmc

n by a factor (I+ anI(θmc
n ))−1, or more easily

by (1 + antrace(I(θmc
n )))−1.

Theoretically, Monte Carlo SGD is based on sampling-controlled stochastic approxi-
mation methods (Dupuis and Simha, 1991), in which the usual regression function of the
Robbins–Monro procedure (Equation 14.9) is only accessible through sampling, for example,
through MCMC. Convergence in such settings is subtle because it depends on the ergodicity
of the underlying Markov chain (Younes, 1999). Finally, when perfect sampling from the
underlying model is not possible, we may use samples S̃n that are obtained by a handful of
MCMC steps, even before the chain has converged. This is the idea of contrastive divergence
algorithm, which we briefly discuss in Section 14.4.4.

14.4 Other Applications

In this section, we will review additional applications of stochastic approximation and SGD,
giving a preference to breadth over depth.

14.4.1 Online EM algorithm

The EM algorithm (Dempster et al., 1977) is a numerically stable procedure to compute the
maximum-likelihood estimator in latent variable models. Slightly changing the notation of
previous sections, let Xn denote the latent variable, let Yn denote the outcome distributed
conditional on Xn, and assume model parameters θ�. Also, let fcom(Xn, Yn; θ) and
fobs(Yn; θ) denote, respectively, the complete data and observed data densities; similarly,
�com and �obs denote the respective log-likelihoods. For simplicity, we will assume that fcom
is an exponential family model in the natural parameterization, that is,

fcom(Xn, Yn; θ) = exp {S(Xn, Yn)
ᵀθ� −A(θ�) +B(Xn, Yn)} (14.35)

for appropriate functions S,A, and B. The Fisher information matrix of complete data
for parameter value θ is denoted by Icom(θ) = −E (∇∇�com(θ;Xn, Yn)); similarly, the
Fisher information matrix of observed data is denoted by Iobs(θ) = −E (∇∇�obs(θ;Yn)).
Furthermore, we assume a finite data set, where Y = (Y1, . . . , YN ) denotes all observed
data, and X = (X1, . . . , XN ) denotes all missing data.

The classical EM algorithm proceeds by iterating the following steps:

Q(θ, θn−1;Y) = E (�com(θ;X,Y)| θn−1,Y) E-step (14.36)

θn = argmax
θ

Q(θ, θn−1;Y) M-step (14.37)
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Dempster et al. (1977) showed that the EM algorithm converges to the maximum likelihood

estimator θ̂ = argmaxθ �obs(θ;Y), and that EM is an ascent algorithm, that is, the
likelihood is strictly increasing at each iteration. Despite this highly desirable numerical
stability, the EM algorithm is impractical for estimation with large data sets because it
involves expensive operations, both in the expectation and maximization steps, that need
to performed on the entire set of N data points.

To speed up the EM algorithm, Titterington (1984) considered a procedure defined
through the iteration

θn = θn−1 + anIcom(θn−1)
−1∇�obs(θn−1;Yn) (14.38)

This procedure is essentially Sakrison’s recursive estimation method described in
Section 14.2.1, appropriately modified to use the Fisher information matrix of ob-
served data. In the univariate case, Titterington (1984) applied Fabian’s theorem
(Fabian, 1968) to show that the estimate in Equation 14.38 satisfies

√
n(θn − θ�) ∼

N (0, Icom(θ�)−2Iobs(θ�)/(2Iobs(θ�)Icom(θ�)−1−1). Thus, as in the classical EM algorithm,
the efficiency of Titterington’s method (Equation 14.38) depends on the fraction of missing
information. Notably, Lange (1995) considered single Newton–Raphson steps in the M-step
of the EM algorithm, and derived a procedure that is similar to Equation 14.38.

However, the procedure 14.38 is essentially an explicit stochastic gradient method, and,
unlike EM, it can have serious stability and convergence problems. In the exponential family
model (Equation 14.35), Nowlan (1991) considered the first true “online” EM algorithm as
follows:

Sn = (1− α)Sn−1 + αE (S(Xn, Yn)| θn−1, Yn) E-step

θn = argmax
θ

�com(θ;Sn) M-step (14.39)

where α ∈ (0, 1). In words, algorithm 14.39 starts from some initial sufficient statistic
S0 and then uses stochastic approximation with a constant step-size α to update it. The
maximization step is identical to that of classical EM, and it is more stable than procedure
14.38 because, as iterations proceed, Sn accumulates information over the entire data set.
A variant of Nowlan’s method with a decreasing step-size was later developed by Sato and
Ishii (2000) as follows:

Sn = (1− an)Sn−1 + anE (S(Xn, Yn)| θn−1, Yn) E-step

θn = argmax
θ

�com(θ;Sn) M-step (14.40)

By the theory of stochastic approximation, procedure 14.40 converges to the observed
data maximum-likelihood estimate θ̂. In contrast, procedure 14.39 will not converge with a
constant α; it will rather reach a point in the vicinity of θ̂ more rapidly than Equation 14.40,
and then oscillate around θ̂. Further online EM algorithms have been developed by several
authors (Neal and Hinton, 1998, Cappé and Moulines, 2009). Examples of a growing body
of applications of such methods can be found in works by Neal and Hinton (1998), Sato and
Ishii (2000), Liu et al. (2006), and Cappé (2011).

14.4.2 MCMC sampling

As before, we need to slightly extend our notation to a Bayesian setting. Let θ denote model
parameters with an assumed prior distribution π(θ). A common task in Bayesian inference
is to sample from the posterior distribution f(θ|Y) ∝ π(θ)f(Y|θ), given N observed data
points Y = {Y1, . . . , YN}.
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The Hamiltonian Monte Carlo (HMC) (Neal, 2011) is an MCMC method in which
auxiliary parameters p are introduced to improve sampling from f(θ|Y). In the augmented
parameter space, we consider a function H(θ, p) = U(θ) + K(p) ∈ R

+, where U(θ) =
− log f(θ|Y) and K(p) = (1/2)pᵀMp, M being positive definite. Next, we consider the
density

h(θ, p|Y) = exp{−H(θ, p)} = exp{−U(θ)−K(p)} = f(θ|Y)×N (p,M−1)

In this parameterization, the variables p are independent of θ. Assuming an initial state
(θ0, p0), sampling with HMC proceeds in iterations indexed by n = 1, . . ., as follows:

1. Sample p∗ ∼ N (0,M−1).

2. Using Hamiltonian dynamics, compute (θn, pn) = ODE(θn−1, p
∗).

3. Perform a Metropolis–Hastings step for the proposed transition (θn−1, p
∗) → (θn, pn)

with acceptance probability min[1, exp(−H(θn, pn) +H(θn−1, p
∗)].

Step 2 is the key idea in HMC. The parameters (θ, p) are mapped to a physical system,
where θ is the position of the system, and p is the momentum. The potential of the physical
system is U(θ) and its kinetic energy is K(p). Function H is known as the Hamiltonian. The
Hamiltonian dynamics refer to a set of ordinary differential equations (ODE) that govern
the movement of the system, and thus determine the future values of (θ, p) given a pair of
current values. Being a closed physical system, the Hamiltonian of the system, H(θ, p) =
U(θ)+K(p), is constant. Thus, in Step 3 of HMC it holds that−H(θn, pn)+H(θn−1, p

∗) = 0,
and thus the acceptance probability is 1, assuming that the solution of the ODE is exact.
This is a significant improvement over generic Metropolis–Hastings, where it is usually hard
to achieve high acceptance probabilities.

A special case of HMC, known as Langevin dynamics (Girolami and Calderhead, 2011),
defines the sampling iterations as follows:

ηn ∼ N (0, εI)

θn = θn−1 +
ε

2
(∇ logπ(θn−1) +∇ log f(Y|θn−1)) + ηn (14.41)

The sampling procedure 14.41 follows from HMC by a numerical solution of the ODE
in Step 2 of the algorithm using the leapfrog method (Neal, 2011). Parameter ε > 0 in
Equation 14.41 determines the size of the leapfrog in the numerical solution of Hamiltonian
differential equations.

Welling and Teh (2011) studied a simple modification of Langevin dynamics (Equa-
tion 14.41) using a stochastic gradient as follows:

ηn ∼ N (0, εn)

θn = θn−1 +
εn

2
(∇ logπ(θn−1) + (N/b)

∑
i∈batch

∇ log f(Yi|θn−1)) + ηn (14.42)

The step sizes εn > 0 satisfy the typical Robbins–Monro requirements, that is,
∑

εi = ∞
and

∑
ε2i < ∞. Procedure 14.42 is using stochastic gradients averaged over a batch of b

data points, a technique usually employed in SGD to reduce noise in stochastic gradients.
Sato and Nakagawa (2014) proved that procedure 14.42 converges to the true posterior
f(θ|Y) using an elegant theory of stochastic calculus. Sampling through stochastic gradient
Langevin dynamics has since generated a lot of related work in posterior sampling for large
data sets, and it is still a rapidly expanding research area with contributions from various
disciplines (Hoffman et al., 2013, Korattikara et al., 2014, Pillai and Smith, 2014).
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14.4.3 Reinforcement learning

Reinforcement learning is the multidisciplinary study of how autonomous agents perceive,
learn, and interact with their environment (Bertsekas and Tsitsiklis, 1995). Typically, it
is assumed that time t proceeds in discrete steps, and at every step an agent is at state
xt ∈ X , where X is the state space. On entering a state xt, two things happen. First, an
agent receives a probabilistic reward R(xt) ∈ R, and, second, the agent takes an action
a ∈ A, where A denotes the action space. This action is determined by the agent’s policy,
which is a function π : X → A, mapping a state to an action. Nature then decides a
transition to state xt+1 according to a probability that is unknown to the agent.

One important task in reinforcement learning is to estimate the value function V π(x),
which quantifies the expected value of a specific state x ∈ X with respect to policy π,
defined as

V π(x) = E (R(x)) + γE (R(x1)) + γ2
E (R(x2)) + · · · (14.43)

where
xt denotes the state that will be reached starting at x after t transitions
γ ∈ (0, 1) is a parameter that discounts future rewards

Uncertainty in R(xt) includes the uncertainty of the state xt because of the stochasticity in
state transitions, and the uncertainty from the reward distribution. Thus, V π(x) admits a
recursive definition as follows:

V π(x) = E (R(x)) + γE (V π(x1)) (14.44)

When the state is a high-dimensional vector, one popular approach is to use a linear
approximation for V (x), such that V (x) = θ

ᵀ
�φ(x), where φ(x) maps a state to a feature

space with fewer dimensions, and θ� is a vector of fixed parameters. If the agent is at state
xt, then the recursive equation (Equation 14.44) can be rewritten as

E (R(xt)− (θᵀ�φt − γθᵀ�φt+1)|φt) = 0 (14.45)

where we set φt = φ(xt) for notational convenience. Similar to SGD, this suggests a
stochastic approximation method to estimate θ� through the following iteration:

θt+1 = θt + at [R(xt)− (θᵀtφt − γθ
ᵀ
tφt+1)]φt (14.46)

where at is a learning rate sequence that satisfies the Robbins–Monro conditions of Section
14.2. Procedure 14.46 is known as the temporal differences (TD) learning algorithm (Sutton,
1988). Implicit versions of this algorithm have recently emerged to solve the known stability
issues of the classical TD algorithm (Wang and Bertsekas, 2013, Tamar et al., 2014). For
example, Tamar et al. (2014) consider computing the term θ

ᵀ
tφt at the future iterate, the

resulting implicit TD algorithm being defined as

θt+1 = (I + atφtφ
ᵀ
t )

−1 [θt + at(R(xt) + γθ
ᵀ
tφt+1)φt] (14.47)

Similar to implicit SGD, iteration 14.47 stabilizes the TD iteration 14.46. With the advent
of online multiagent markets, methods and applications in reinforcement learning have been
receiving a renewed stream of research effort (Gosavi, 2009).

14.4.4 Deep learning

Deep learning is the task of estimating parameters of statistical models that can be
represented by multiple layers of nonlinear operations, such as neural networks (Bengio,
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2009). Such models, also referred to as deep architectures, consist of units that can perform
a basic prediction task, and are grouped in layers such that the output of one layer forms
the input of another layer that sits directly on top. Furthermore, the models are usually
augmented with latent units that are defined to represent structured quantities of interest,
such as edges or shapes in an image.

One basic building block of deep architectures is the Restricted Boltzmann Machine
(RBM). The complete-data density for one data point (X,Y ) of the states of hidden and
observed input units, respectively, is given by

f(X,Y ; θ) =
exp{−b′Y − c′x−X ′WY }

Z(θ)
(14.48)

where θ = (b, c,W ) are the model parameters, and the function Z(θ) =
∑

X,Y exp{−b′Y −
c′x − X ′WY }, also known as the partition function, acts as the normalizing constant.
Furthermore, the sample spaces for X and Y are discrete (for example, binary) and finite.
The observed-data density is thus f(Y ; θ) =

∑
X f(X,Y ; θ). Let H(X,Y ; θ) = b′Y + c′x+

X ′WY , such that f(X,Y ; θ) = (e−H(X,Y ;θ))/(Z(θ)). Consider also observed data Y =
{Y1, Y2, . . . , YN}, and missing data X = {X1, X2, . . . , Xn}.

Through simple algebra one can obtain the gradient of the log-likelihood of observed
data in the following convenient form:

∇�(θ;Y) = − [E (∇H(X,Y; θ))− E (∇H(X,Y; θ)|Y)] (14.49)

where H(X,Y; θ) =
∑N

n=1 H(Xn, Yn; θ). In practical situations, the data points (Xn, Yn)
are binary. Therefore, the conditional distribution of the missing data Xn|Yn is readily
available through a logistic regression model, and thus the second term of Equation 14.49
is easy to sample from. Similarly, Yn|Xn is easy to sample from. However, the first term in
Equation 14.49 requires sampling from the joint distribution of the complete data (X,Y),
which conceptually is easy to do using the aforementioned conditionals and a Gibbs sampling
scheme (Geman and Geman, 1984). However, the domain for both X and Y is typically
very large, for example, it comprises thousands or millions of units, and thus a full Gibbs
on the joint distribution is impossible.

The method of contrastive divergence (Hinton, 2002, Carreira-Perpinan and Hinton,
2005) has been applied for training such models with considerable success. The algorithm
proceeds as follows for steps i = 1, 2, . . .:

1. Sample one state Y (i) from the empirical distribution of observed data Y.

2. Sample X(i)|Y (i), that is, the hidden state.

3. Sample Y (i,new)|X(i).

4. Sample X(i,new)|Y (i,new).

5. Evaluate the gradient (Equation 14.49) using (X(i), Y (i)) for the second term, and the
sample (X(i,new), Y (i,new)) for the first term.

6. Update the parameters in θ using constant-step-size SGD and the estimated gradient
from Step 5.

In other words, contrastive divergence attempts to estimate ∇�(θ;Y) in Equation 14.49.
This estimation is biased because (X(i,new), Y (i,new)) is assumed to be from the exact joint
distribution of (X,Y ); however, they are single Gibbs iterations starting from the observed
and imputed data (X(i), Y (i)), respectively. In theory, Steps 3 and 4 could be repeated
k times; for example, if k → ∞ the sampling distribution of (X(i,new), Y (i,new)) would
be the exact joint distribution of (X,Y ), leading to unbiased estimation of ∇�(θ;Y) of
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Equation 14.49. Surprisingly, it has been empirically observed that k = 1 is enough for
good performance in many learning tasks (Hinton, 2002, Taylor et al., 2006, Salakhutdinov
et al., 2007, Bengio, 2009, Bengio and Delalleau, 2009), which is a testament to the power
and flexibility of stochastic gradient methods.

14.5 Glossary

SGD: Stochastic gradient descent.
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