BACKGROUND	Examples 0000	STATISTICAL PROPERTIES	EXPERIMENTS 00	Summary
S	Statistical ar	nalysis of stocha	stic gradient	

methods for generalized linear models

Panos Toulis ptoulis@fas.harvard.edu Harvard University, Department of Statistics

Joint work with Jason Rennie (Google) & Edoardo M Airoldi (Harvard)

FOCUS OF THIS WORK

- Stochastic Gradient Descent (SGD): computationally attractive, slow convergence, great empirical performance.
- ► As a *statistical* estimation method, still not well-understood.
- Say θ_n^{sgd} is the output of SGD given observed data y generated by a model with true parameters θ^{*}; we ask:
 - What is the bias $\mathbb{E}\left(\boldsymbol{\theta}_{n}^{\mathrm{sgd}}-\boldsymbol{\theta}^{*}\right)$?
 - What is the variance $\operatorname{Var}\left(\boldsymbol{\theta}_{n}^{\operatorname{sgd}}\right)$?
 - How to optimally set the learning rate?
- ► We also want to consider SGD with *explicit* and *implicit* updates and provide a meaningful comparison.

PROBLEM AND NOTATION

GLM FAMILY

At every time step indexed by n, assume the following data generating process:

- $\boldsymbol{x}_n \sim G$ sampled iid, $\in \mathbb{R}^p$ (features)
- $y_n \sim f(y_n; \boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}^*, \psi) \in \mathbb{R}$ (outcome)

such that $f(\cdot)$ is a density in the *exponential family* and

$$\mathbb{E}(y_n | \boldsymbol{x}_n) = h(\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}^*)$$
(1)

where $h(\cdot)$ is the (monotone) *link* function, $\theta^* \in \mathbb{R}^p$ are the unknown model parameters, and $\psi > 0$ is the dispersion parameter.

Our **goal** is to *estimate* θ^* given observations (y_i, x_i) , indexed by $i = 1, \dots N$.

KNOWN PROPERTIES OF EXPONENTIAL FAMILY/GLMS.

Let $\ell(\theta; y_n, x_n)$ be the log-likelihood of θ for observation (y_n, x_n) . The following hold for a GLM:

$$\nabla \ell(\boldsymbol{\theta}; y_n, \boldsymbol{x}_n) = \frac{1}{\psi} \left(y_n - h(\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}) \right) \boldsymbol{x}_n$$
(2)

$$\mathcal{I}(\boldsymbol{\theta}) = -\mathbb{E}\left(\nabla\nabla\ell(\boldsymbol{\theta}; y_n, \boldsymbol{x}_n)\right) = \frac{1}{\psi} \mathbb{E}\left(h'(\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}) \boldsymbol{x}_n \boldsymbol{x}_n^{\mathsf{T}}\right)$$
(3)

- Equation (2) gives the gradient of the log-likelihood in terms of "observed - expected" of the sufficient statistics.
- Equation (3) gives the Fisher information matrix. The value *I*(θ^{*})⁻¹ is the theoretically **best** possible variance we can achieve if we try to (unbiasedly) estimate θ^{*}.

ITERATIVE ESTIMATION OF GLMS

SGD PROCEDURES

The explicit SGD updates are given by

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + a_n \left(y_n - h(\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}_{n-1}) \right) \boldsymbol{x}_n \tag{4}$$

The implicit SGD updates are given by

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + a_n \left(y_n - h(\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}_n) \right) \boldsymbol{x}_n \tag{5}$$

Remark #1. After *n* iterations, both procedures provide an *estimate* of θ^* :

- θ_n^{sgd} of the explicit updates is the *explicit SGD estimator* of θ^* .
- Similary, θ_n^{im} is the *implicit SGD estimator* of θ^* .

ITERATIVE ESTIMATION OF GLMS

SGD PROCEDURES

The explicit SGD updates are given by

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + a_n \left(y_n - h(\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}_{n-1}) \right) \boldsymbol{x}_n \tag{6}$$

The implicit SGD updates are given by

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + a_n \left(y_n - h(\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}_n) \right) \boldsymbol{x}_n \tag{7}$$

Remark #2. Implicit methods are less well-studied.

- Similar ideas have been used in numerical analysis e.g., Crank-Nicolson method (1947), to solve PDE.
- The NLMS algorithm in signal processing (Nagumo & Noda, 1967) uses an implicit method for linear regression.
- Recent interest due to stability of the method (Kivinen, 1996), (Kivinen et al., 2006), (Kulis & Bartlett, 2010).

BACKGROUND	EXAMPLES •••••	STATISTICAL PROPERTIES	EXPERIMENTS 00	SUMMARY

EXAMPLE 1 : NORMAL MODEL

Assume

 $m{x}_n \sim G ext{ and } m{X}_n = m{x}_n m{x}_n^{\intercal}$ (possibly random) $y_n \sim \mathcal{N}(m{x}_n^{\intercal} m{ heta}^*, \sigma^2)$

The explicit SGD update is,

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + a_n \underbrace{(y_n - \boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}_{n-1})}_{\text{observed - expected}} \boldsymbol{x}_n = (\boldsymbol{I} - a_n \boldsymbol{X}_n) \boldsymbol{\theta}_{n-1} + a_n y_n \boldsymbol{x}_n$$

The implicit SGD can be derived analytically as,

$$\boldsymbol{\theta}_n = (\boldsymbol{I} + a_n \boldsymbol{X}_n)^{-1} (\boldsymbol{\theta}_{n-1} + a_n y_n \boldsymbol{x}_n)$$

The latter update is known as the "Normalized Least Mean Squares" filter.

BACKGROUND	Examples 000	STATISTICAL PROPERTIES	EXPERIMENTS 00	SUMMARY

EXAMPLE 2: POISSON REGRESSION Assume

$$y_n \sim \operatorname{Pois}(e^{\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}^*})$$

The explicit SGD is,

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + a_n \underbrace{(y_n - e^{\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}_{n-1}})}_{\text{observed - expected}} \boldsymbol{x}_n$$

The implicit SGD is,

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + a_n (y_n - e^{\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}_n}) \boldsymbol{x}_n$$

- Explicit SGD is problematic in this model because of the non-linearity of the score function.
- The implicit update cannot be derived analytically. However, we will show how it can be computed efficiently.

200

EXAMPLE 2: POISSON REGRESSION (CONTINUED) INSTABILITY OF **explicit** SGD

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + a_n (y_n - e^{\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\theta}_{n-1}}) \boldsymbol{x}_n$$

► Assume one-dimensional case, for which $\theta_0 = 0, x_0 = x_1 = a_0 = 1, y_1 = 1001$, then the update is:

$$\theta_1 = 0 + 1(1001 - 1)1 = 1000$$

▶ In the next iteration assume that $y_2 = 500, a_1 = 0.5$, then:

$$\theta_2 = 1000 + 0.5(500 - e^{1000})1 = -\infty$$

The problem is that the starting point ($\theta_0 = 0$) was far away from the observation $y_1 = 1001$ and the learning rate was not small enough to prevent a large update (misspecification).

EXAMPLE 2: POISSON REGRESSION (CONTINUED) STABILITY OF **implicit** SGD

Implicit update for Poisson regression model

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + a_n (y_n - e^{\boldsymbol{x}_n^\mathsf{T} \boldsymbol{\theta}_n}) \boldsymbol{x}_n$$

The implicit update would solve:

$$\theta_1 = 0 + 1(1001 - \underbrace{e^{\theta_1}}_{\text{implicit}})1$$

and so $\theta_1 \approx \log(1001)$.

In case of misspecification, the implicit update will try to "overfit" on the current data point but does not diverge like explicit SGD.

BIAS

Let $J = \psi \mathcal{I}(\theta^*)$. It holds:

$$||\mathbf{E}(\boldsymbol{\theta}_n^{\mathrm{sgd}}) - \boldsymbol{\theta}^*|| \propto \prod_i^n ||(\boldsymbol{I} - a_i \boldsymbol{J})||$$
$$||\mathbf{E}(\boldsymbol{\theta}_n^{\mathrm{im}}) - \boldsymbol{\theta}^*|| \propto \prod_i^n ||(\boldsymbol{I} + a_i \boldsymbol{J})^{-1}||$$

▶ For large enough n,

$$||(I - a_n J)|| \le ||(I + a_n J)^{-1}||$$

and so the explicit SGD is converging *faster*. However, the asymptotic rates are equal.

► The spectra of (*I* − *ϵJ*) and (*I* + *ϵJ*)⁻¹ are crucial for their stability properties.

BACKGROUND	Examples 0000	STATISTICAL PROPERTIES	EXPERIMENTS 00	SUMMARY

STABILITY

Recall that $J = \psi \mathcal{I}(\boldsymbol{\theta}^*) \ge 0$. For $\epsilon > 0$,

- ► The spectrum of (*I* − *ϵJ*) is equal to (1 − *ϵ*λ_i(*J*)). For stability, we thus need |1 − *ϵ*λ_i(*J*)| < 1. The explicit updates are *conditionally stable*.
- The spectrum of (*I* + ε*J*)⁻¹ is (1 + ελ_i(*J*))⁻¹ < 1 and thus, the implicit updates are *unconditionally stable*.

ASYMPTOTIC VARIANCE

Let
$$\operatorname{Var}\left(\boldsymbol{\theta}_{n}^{\operatorname{sgd}}\right) = \boldsymbol{\Sigma}_{n}^{\operatorname{sgd}}$$
 and $\operatorname{Var}\left(\boldsymbol{\theta}_{n}^{\operatorname{im}}\right) = \boldsymbol{\Sigma}_{n}^{\operatorname{im}}$.

Theorem 3. The asympotic variance of the explicit SGD estimator is,

$$n \cdot \boldsymbol{\Sigma}_n^{\text{sgd}} \to \alpha^2 \psi^2 (2\alpha \psi \boldsymbol{\mathcal{I}}(\boldsymbol{\theta}^*) - \boldsymbol{I})^{-1} \boldsymbol{\mathcal{I}}(\boldsymbol{\theta}^*)$$
 (8)

The asymptotic variance of the implicit SGD estimator is,

$$n \cdot \boldsymbol{\Sigma}_n^{\text{im}} \to \alpha^2 \psi^2 (2\alpha \psi \boldsymbol{\mathcal{I}}(\boldsymbol{\theta}^*) - \boldsymbol{I})^{-1} \boldsymbol{\mathcal{I}}(\boldsymbol{\theta}^*)$$
(9)

Assuming convergence, both SGD methods have the same asymptotic efficiency.

ASYMPTOTIC VARIANCE (CONTINUED)

It holds that

$$a^2\psi^2(2a\psi\mathcal{I}(\boldsymbol{\theta}^*)-\boldsymbol{I})^{-1}\mathcal{I}(\boldsymbol{\theta}^*) \geq \underbrace{\mathcal{I}(\boldsymbol{\theta}^*)^{-1}}_{\mathsf{MLE}(\mathsf{theoretically optimal})}, \forall \alpha, \psi > 0$$

Not surprisingly, both methods incur information loss.

However, it is possible to optimize for the learning rate e.g., minimize the trace of the asymptotic variance:

$$\hat{\alpha} = \arg\min_{a} \sum_{i} \frac{a^2 \lambda_i}{2a\lambda_i - 1}$$
(10)

for $\lambda_i = \operatorname{spectrum}(\psi \mathcal{I}(\boldsymbol{\theta}^*)).$

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ◆ ● ◆ ● ◆

(left) = log-bias (2.5-97.5% percentiles), (right) trace of empirical covariance matrix over 2,000 samples

三 つへぐ

BACKGROUND	Examples 0000	STATISTICAL PROPERTIES	EXPERIMENTS O	SUMMARY
				f -

EXPERIMENTS ON CLASSIFICATION TASKS (SVM)

Table : Test errors of explicit and implicit SGD methods on the RCV1 dataset benchmark. Training times are roughly comparable. Best scores, for a particular loss and regularization, are bolded.

REGULARIZATION (λ)

LOSS		1E-5	1E-7	1E-12
HINGE	SGD	4.65%	3.57%	4.85%
	IMPLICIT	4.68%	3.6%	3.46%
Log	SGD	5.23%	3.87%	5.42%
	IMPLICIT	4.28%	3.69%	4.01%

BACKGROUND	Examples 0000	STATISTICAL PROPERTIES	Experiments 00	SUMMARY
SUMMARY				

- Exact statistical analysis of SGD is possible in GLMs, both for explicit and implicit updates.
- ► Helps in optimizing for the learning rate.
- Implicit updates compare favorably to explicit ones:
 - They are easy to implement (Theorem 1).
 - ► They have the same asymptotic performance (bias and variance, Theorems 2,3).
 - They are unconditionally stable, and thus more robust to misspecification.
 - Vanilla implementation performs on par with standard SGD on large-scale optimization tasks.

BACKGROUND	EXAMPLES	STATISTICAL PROPERTIES	Experiments	SUMMARY
	0000	000	00	

Thank you!

(poster #T-76).

<ロ> <0</p>