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INTRODUCTION
FOCUS OF THIS WORK

I Stochastic Gradient Descent (SGD): computationally
attractive, slow convergence, great empirical performance.

I As a statistical estimation method, still not well-understood.
I Say θsgdn is the output of SGD given observed data y

generated by a model with true parameters θ∗; we ask:
I What is the bias E

(
θsgdn − θ∗

)
?

I What is the variance Var
(
θsgdn

)
?

I How to optimally set the learning rate?
I We also want to consider SGD with explicit and implicit

updates and provide a meaningful comparison.
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PROBLEM AND NOTATION
GLM FAMILY

At every time step indexed by n, assume the following data
generating process:

I xn ∼ G sampled iid, ∈ Rp (features)
I yn ∼ f(yn;xᵀ

nθ
∗, ψ) ∈ R (outcome)

such that f(·) is a density in the exponential family and

E (yn|xn) = h(xᵀ
nθ
∗) (1)

where h(·) is the (monotone) link function, θ∗ ∈ Rp are the
unknown model parameters, and ψ > 0 is the dispersion
parameter.

Our goal is to estimate θ∗ given observations (yi,xi), indexed
by i = 1, · · ·N .
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KNOWN PROPERTIES OF EXPONENTIAL FAMILY/GLMS.

Let `(θ; yn,xn) be the log-likelihood of θ for observation
(yn,xn). The following hold for a GLM:

∇`(θ; yn,xn) =
1

ψ
(yn − h(xᵀ

nθ))xn (2)

I(θ) = −E (∇∇`(θ; yn,xn)) =
1

ψ
E
(
h′(xᵀ

nθ)xnx
ᵀ
n

)
(3)

I Equation (2) gives the gradient of the log-likelihood in
terms of “observed - expected” of the sufficient statistics.

I Equation (3) gives the Fisher information matrix. The value
I(θ∗)−1 is the theoretically best possible variance we can
achieve if we try to (unbiasedly) estimate θ∗.
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ITERATIVE ESTIMATION OF GLMS
SGD PROCEDURES

The explicit SGD updates are given by

θn = θn−1 + an (yn − h(xᵀ
nθn−1))xn (4)

The implicit SGD updates are given by

θn = θn−1 + an (yn − h(xᵀ
nθn))xn (5)

Remark #1. After n iterations, both procedures provide an estimate of θ∗:
I θsgd

n of the explicit updates is the explicit SGD estimator of θ∗.
I Similary, θim

n is the implicit SGD estimator of θ∗.
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ITERATIVE ESTIMATION OF GLMS
SGD PROCEDURES

The explicit SGD updates are given by

θn = θn−1 + an (yn − h(xᵀ
nθn−1))xn (6)

The implicit SGD updates are given by

θn = θn−1 + an (yn − h(xᵀ
nθn))xn (7)

Remark #2. Implicit methods are less well-studied.
I Similar ideas have been used in numerical analysis e.g.,

Crank-Nicolson method (1947), to solve PDE.
I The NLMS algorithm in signal processing (Nagumo & Noda, 1967) uses

an implicit method for linear regression.
I Recent interest due to stability of the method (Kivinen, 1996), (Kivinen

et al., 2006), (Kulis & Bartlett, 2010).
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EXAMPLE 1 : NORMAL MODEL

Assume

xn ∼ G and Xn = xnx
ᵀ
n (possibly random)

yn ∼ N (xᵀ
nθ
∗, σ2)

The explicit SGD update is,

θn = θn−1 + an (yn − xᵀ
nθn−1)︸ ︷︷ ︸

observed - expected

xn = (I − anXn)θn−1 + anynxn

The implicit SGD can be derived analytically as,

θn = (I + anXn)
−1(θn−1 + anynxn)

The latter update is known as the “Normalized Least Mean Squares” filter.
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EXAMPLE 2: POISSON REGRESSION
Assume

yn ∼ Pois(ex
ᵀ
nθ

∗
)

The explicit SGD is,

θn = θn−1 + an (yn − ex
ᵀ
nθn−1)︸ ︷︷ ︸

observed - expected

xn

The implicit SGD is,

θn = θn−1 + an(yn − ex
ᵀ
nθn)xn

I Explicit SGD is problematic in this model because of the
non-linearity of the score function.

I The implicit update cannot be derived analytically.
However, we will show how it can be computed efficiently.
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EXAMPLE 2: POISSON REGRESSION (CONTINUED)
INSTABILITY OF explicit SGD

θn = θn−1 + an(yn − ex
ᵀ
nθn−1)xn

I Assume one-dimensional case, for which
θ0 = 0, x0 = x1 = a0 = 1, y1 = 1001, then the update is:

θ1 = 0 + 1(1001− 1)1 = 1000

I In the next iteration assume that y2 = 500, a1 = 0.5, then:

θ2 = 1000 + 0.5(500− e1000)1 = −∞

The problem is that the starting point (θ0 = 0) was far away from the
observation y1 = 1001 and the learning rate was not small enough to
prevent a large update (misspecification).
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EXAMPLE 2: POISSON REGRESSION (CONTINUED)
STABILITY OF implicit SGD

Implicit update for Poisson regression model

θn = θn−1 + an(yn − ex
ᵀ
nθn)xn

I The implicit update would solve:

θ1 = 0 + 1(1001− eθ1︸︷︷︸
implicit

)1

and so θ1 ≈ log(1001).

In case of misspecification, the implicit update will try to “overfit” on the
current data point but does not diverge like explicit SGD.
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BIAS

Let J = ψI(θ∗). It holds:

||E(θsgdn )− θ∗|| ∝
n∏
i

||(I − aiJ)||

||E(θimn )− θ∗|| ∝
n∏
i

||(I + aiJ)
−1||

I For large enough n,

||(I − anJ)|| ≤ ||(I + anJ)
−1||

and so the explicit SGD is converging faster. However, the
asymptotic rates are equal.

I The spectra of (I − εJ) and (I + εJ)−1 are crucial for their
stability properties.
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STABILITY

Recall that J = ψI(θ∗) ≥ 0. For ε > 0,

I The spectrum of (I − εJ) is equal to (1− ελi(J)). For
stability, we thus need |1− ελi(J)| < 1. The explicit
updates are conditionally stable.

I The spectrum of (I + εJ)−1 is (1 + ελi(J))
−1 < 1 and thus,

the implicit updates are unconditionally stable.
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ASYMPTOTIC VARIANCE

Let Var
(
θsgdn

)
= Σsgd

n and Var
(
θimn
)
= Σim

n .

Theorem 3. The asympotic variance of the explicit SGD
estimator is,

n ·Σsgd
n → α2ψ2(2αψI(θ∗)− I)−1I(θ∗) (8)

The asymptotic variance of the implicit SGD estimator is,

n ·Σim
n → α2ψ2(2αψI(θ∗)− I)−1I(θ∗) (9)

Assuming convergence, both SGD methods have the same
asymptotic efficiency.
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ASYMPTOTIC VARIANCE (CONTINUED)

I It holds that

a2ψ2(2aψI(θ∗)− I)−1I(θ∗) ≥ I(θ∗)−1︸ ︷︷ ︸
MLE(theoretically optimal)

, ∀α,ψ > 0

Not surprisingly, both methods incur information loss.
I However, it is possible to optimize for the learning rate

e.g., minimize the trace of the asymptotic variance:

α̂ = argmin
a

∑
i

a2λi
2aλi − 1

(10)

for λi = spectrum(ψI(θ∗)).
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θ∗ = 1 ∈ R20, xn ∼ N (0,V ), λi(V ) ∈ [0.2, 1], yn ∼ N (xᵀ
nθ
∗, 1).

(left) = log-bias (2.5-97.5% percentiles),
(right) trace of empirical covariance matrix over 2,000 samples
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EXPERIMENTS ON CLASSIFICATION TASKS (SVM)
TESTING OUTSIDE GLM FAMILY

Table : Test errors of explicit and implicit SGD methods on the RCV1
dataset benchmark. Training times are roughly comparable. Best
scores, for a particular loss and regularization, are bolded.

REGULARIZATION (λ)

LOSS 1E-5 1E-7 1E-12

HINGE SGD 4.65% 3.57% 4.85%

IMPLICIT 4.68% 3.6% 3.46%

LOG SGD 5.23% 3.87% 5.42%

IMPLICIT 4.28% 3.69% 4.01%
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SUMMARY

I Exact statistical analysis of SGD is possible in GLMs, both
for explicit and implicit updates.

I Helps in optimizing for the learning rate.
I Implicit updates compare favorably to explicit ones:

I They are easy to implement (Theorem 1).
I They have the same asymptotic performance (bias and

variance, Theorems 2,3).
I They are unconditionally stable, and thus more robust to

misspecification.
I Vanilla implementation performs on par with standard SGD

on large-scale optimization tasks.
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Thank you!

(poster #T-76).
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