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INTRODUCTION

FOCUS OF THIS WORK

» Stochastic Gradient Descent (SGD): computationally
attractive, slow convergence, great empirical performance.
» As a statistical estimation method, still not well-understood.

» Say 658 is the output of SGD given observed data y
generated by a model with true parameters 6*; we ask:

» What is the bias E (0§§d - 9*)?
» What is the variance Var (Oigd> ?
» How to optimally set the learning rate?

» We also want to consider SGD with explicit and implicit
updates and provide a meaningful comparison.
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PROBLEM AND NOTATION

GLM FAMILY
At every time step indexed by n, assume the following data
generating process:
» x, ~ G sampled iid, € RP (features)
> Yo ~ f(yn; 2h0*, 1) € R (outcome)
such that f(-) is a density in the exponential family and

E (yn’ x,) = h(mLB*) (1)

where h(-) is the (monotone) link function, 6* € R? are the
unknown model parameters, and ¢ > 0 is the dispersion
parameter.

Our goal is to estimate 8* given observations (y;, x;), indexed
byi=1,---N.
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KNOWN PROPERTIES OF EXPONENTIAL FAMILY/GLMS.

Let ¢(0;y,, x,,) be the log-likelihood of @ for observation
(Yn, xy). The following hold for a GLM:

;} (yn — h(210)) @, @)

1(0) = —E(VVU(0; yn. ) = ~E (W (@]0)z,2])  (3)
v

VeO; yn, xy) =

» Equation (2) gives the gradient of the log-likelihood in
terms of “observed - expected” of the sufficient statistics.

» Equation (3) gives the Fisher information matrix. The value
Z(6*)~! is the theoretically best possible variance we can
achieve if we try to (unbiasedly) estimate 6*.
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ITERATIVE ESTIMATION OF GLMs

SGD PROCEDURES
The explicit SGD updates are given by
071 = en—l +ap (yn - h(w;rzen—l)) Tn (4)

The implicit SGD updates are given by

0, =0,_1+an(yn, — h(x]0,)) x, (5)

Remark #1. After n iterations, both procedures provide an estimate of 68*:
» 0554 of the explicit updates is the explicit SGD estimator of 6*.
» Similary, 8™ is the implicit SGD estimator of 8*.
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ITERATIVE ESTIMATION OF GLMS
SGD PROCEDURES

The explicit SGD updates are given by
0,=0,_1+a, (yn - h(w;l;enfl)) Ln (6)
The implicit SGD updates are given by

0, =06,_1+a,(y, — h(x]0,)) x, (7)

Remark #2. Implicit methods are less well-studied.

» Similar ideas have been used in numerical analysis e.g.,
Crank-Nicolson method (1947), to solve PDE.

» The NLMS algorithm in signal processing (Nagumo & Noda, 1967) uses
an implicit method for linear regression.

» Recent interest due to stability of the method (Kivinen, 1996), (Kivinen
et al., 2006), (Kulis & Bartlett, 2010).
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EXAMPLE 1 : NORMAL MODEL
Assume

x, ~Gand X, = z,z] (possibly random)
Yn ~ N (x] 0%, 0%)

The explicit SGD update is,

0,=0,1+a, (yn - w;gen—l) Lp = (I - aan)On—l + anyYnTn
—_—

observed - expected

The implicit SGD can be derived analytically as,
0, = (I + aan)_l(enfl + anynmn)

The latter update is known as the “Normalized Least Mean Squares” filter.
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EXAMPLE 2: POISSON REGRESSION
Assume

Yn ~ Pois(emw*)
The explicit SGD is,
0, = Op1 + ap (Yo — 01z,
observed - expected
The implicit SGD is,
0, =06,_1+an(y, — emwn)mn
» Explicit SGD is problematic in this model because of the

non-linearity of the score function.

» The implicit update cannot be derived analytically.
However, we will show how it can be computed efficiently.
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EXAMPLE 2: POISSON REGRESSION (CONTINUED)

INSTABILITY OF explicit SGD

en = enfl + an(yn - em;0n71)mn
» Assume one-dimensional case, for which
0y = 0,29 = x1 = ap = 1,y1 = 1001, then the update is:
61 =0+ 1(1001 — 1)1 = 1000
» In the next iteration assume that y, = 500, a; = 0.5, then:

0y = 1000 + 0.5(500 — €'%99)1 = —0

The problem is that the starting point (6o = 0) was far away from the
observation y; = 1001 and the learning rate was not small enough to
prevent a large update (misspecification).
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EXAMPLE 2: POISSON REGRESSION (CONTINUED)

STABILITY OF implicit SGD

Implicit update for Poisson regression model

0n - gn—l + an(yn - ewlen)wn

» The implicit update would solve:

01 =0+1(1001 — €% )1
~—~—
implicit

and so 6; ~ log(1001).

In case of misspecification, the implicit update will try to “overfit” on the
current data point but does not diverge like explicit SGD.
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BIAS
Let J = ¢Z(6"). It holds:

IE(6751) — 67| o H (T = aiJ
HEw?)—WHKIIWI+%JYW

» For large enough n,
(I = an D) < [|(I +and) 7|

and so the explicit SGD is converging faster. However, the
asymptotic rates are equal.

» The spectra of (I —J) and (I + ¢J)~! are crucial for their
stability properties.
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STABILITY

Recall that J = ¢Z(0*) > 0. For e > 0,

» The spectrum of (I —eJ) is equal to (1 — eX;(J)). For
stability, we thus need |1 — e\;(J)| < 1. The explicit
updates are conditionally stable.

» The spectrum of (I +eJ)~tis (1 +eX;(J))~! < 1 and thus,
the implicit updates are unconditionally stable.
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ASYMPTOTIC VARIANCE

Let Var (6329) = 2584 and Var (6)) = =i,

Theorem 3. The asympotic variance of the explicit SGD
estimator is,

n- 284 5 0?2 (209 Z(0%) — I)1Z(6%) (8)
The asymptotic variance of the implicit SGD estimator is,
n-Em 02?20 Z(0%) — I) ' Z(0%) (9)

Assuming convergence, both SGD methods have the same
asymptotic efficiency.
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ASYMPTOTIC VARIANCE (CONTINUED)

» It holds that
a*P?(20)Z(0%) — I)7'Z(8%) > (o) Ve, >0
N —
MLE (theoretically optimal)

Not surprisingly, both methods incur information loss.

» However, it is possible to optimize for the learning rate
e.g., minimize the trace of the asymptotic variance:

2
Z i
(3( = arg mgn 2(;;7_1 (1 0)
. 3

for \; = spectrum(¢Z(0%)).
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0" =1cR®, x, ~N(0,V), \i(V) €[0.2,1], y, ~ N(1,6%,1).

(left) = log-bias (2.5-97.5% percentiles),
(right) trace of empirical covariance matrix over 2,000 samples

Bias asymptotics

—_—
Impliit

log | bias

Bias/Learning rate (Ir)
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EXPERIMENTS ON CLASSIFICATION TASKS (SVM)

TESTING OUTSIDE GLM FAMILY

Table : Test errors of explicit and implicit SGD methods on the RCV1
dataset benchmark. Training times are roughly comparable. Best
scores, for a particular loss and regularization, are bolded.

REGULARIZATION ()

LOSS 1E-5 1E-7 1E-12
HINGE SGD 4.65% 3.57% 4.85%
IMPLICIT 4.68% 3.6%  3.46%
Loa SGD 5.23% 3.87% 5.42%
IMPLICIT 4.28% 3.69% 4.01%
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SUMMARY

» Exact statistical analysis of SGD is possible in GLMs, both
for explicit and implicit updates.

» Helps in optimizing for the learning rate.
» Implicit updates compare favorably to explicit ones:
» They are easy to implement (Theorem 1).
» They have the same asymptotic performance (bias and
variance, Theorems 2,3).
» They are unconditionally stable, and thus more robust to
misspecification.
» Vanilla implementation performs on par with standard SGD
on large-scale optimization tasks.
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SUMMARY

Thank you!

(poster #T-76).
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