Randomization Inference for Spillover Effects

Panagiotis (Panos) Toulis
panos.toulis@chicagobooth.edu

Econometrics and Statistics
University of Chicago, Booth School of Business

Introduction

The standard methods of causal inference tacitly assume no interference; i.e., treatment on an individual unit cannot affect other units.

This assumes a simple, static world.

However, many interesting problems exist in settings where units interact in a complex way.
-spillovers, peer effects, contagion, equilibrium effects, etc.
Pervasive in most social studies. Can either be a nuisance to be addressed by design, or the quantity of interest.

New methods and tools are needed. Many applications: e.g., policy making, marketplace algorithms, climate science, healthcare, etc.

Motivation: Crime spillovers in Medellin, Colombia

Crime spillovers from nearby treated streets on control streets?

Causal Inference

Suppose data $\left\{\left(Y_{i}, Z_{i}, X_{i}\right)\right\}, i=1, \ldots, N$.
Here, $Y=$ outcome, $Z=$ treatment, $X=$ covariates (features).
We want to understand the causal effect of Z on Y.

Some options:
(1) *Model-based approach: Regress $Y \sim Z+X$.

Validate with IV, "parallel trends", etc.
(2) *Design-based approach: Exploit known variation in Z (e.g., from an experiment). The "potential outcomes" are fixed. e.g., Randomized studies. Remains the gold standard of causal inference.
(3) Causal graphs: Not today.
(4) DSGE-style / structural models: "Model-based approach on steroids". Still popular in macro policy making.

Pitfalls of model-based approach

A model-based approach requires correct specification, and is open to potential biases.

A more pernicious problem is how the method quantifies uncertainty.
Example: Suppose a completely randomized design (50\% treated/control):

Unit (i)	Treatment $\left(Z_{i}\right)$	Outcome $\left(Y_{i}\right)$
1	1	8
2	0	$3+\epsilon$
3	0	$3-\epsilon$
4	1	8

Regress $Y_{i} \sim Z_{i}$. The estimate of "causal effect" is +5 .
What is the standard error?

Pitfalls of model-based approach

A model-based approach requires correct specification, and is open to potential biases.

A more pernicious problem is how the method quantifies uncertainty.
Example: Suppose a completely randomized design (50\% treated/control):

Unit (i)	Treatment $\left(Z_{i}\right)$	Outcome $\left(Y_{i}\right)$
1	1	8
2	0	$3+\epsilon$
3	0	$3-\epsilon$
4	1	8

Regress $Y_{i} \sim Z_{i}$. The estimate of "causal effect" is +5 .
What is the standard error? $O(\epsilon)$. (arbitrary level of certainty).
\hookrightarrow Standard error estimation is conflated with model fit.
(here, the data fit a line very well).

Design-based approach

A design-based approach exploits the actual variation in the experiment. The idea is to predict outcomes under counterfactual treatment assignments. Then compare with what was observed.
When possible, this is a more accurate way of quantifying uncertainty.

Design-based approach

A design-based approach exploits the actual variation in the experiment. The idea is to predict outcomes under counterfactual treatment assignments. Then compare with what was observed.
When possible, this is a more accurate way of quantifying uncertainty.

To illustrate, suppose counterfactual assignment $Z^{\prime}=(0,1,1,0)$.

- According to our experiment design, this assignment is equally probable to the observed one.

What would be the outcomes Y^{\prime} under Z^{\prime} ?

Unit (i)	Treatment $\left(Z_{i}^{\prime}\right)$	Outcome $\left(Y_{i}^{\prime}\right)$
1	0	$?$
2	1	$?$
3	1	$?$
4	0	$?$

Design-based approach

If the treatment does not affect outcomes, then Y^{\prime} would be equal to the observed Y.

Design-based approach

If the treatment does not affect outcomes, then Y^{\prime} would be equal to the observed Y.

That is, the observed data would be as follows:

Unit (i)	Treatment $\left(Z_{i}^{\prime}\right)$	Outcome $\left(Y_{i}^{\prime}\right)$
1	0	8
2	1	$3+\epsilon$
3	1	$3-\epsilon$
4	0	8

In this case, we would have calculated an effect of -5 instead of +5 .
We can repeat this procedure for all 6 possible randomizations.
Observing an effect of +5 , although extreme, has a $1 / 6>16 \%$ chance of happening.

No significance. (cf. linear model).

General Idea: Fisher's Randomization Test

Design $\mathrm{D}(z) \in[0,1]=$ probability distribution of treatment.
Let $Y_{i}(0), Y_{i}(1)$ be the "potential outcomes" of unit i under control and treatment, respectively.
This is known as a stability assumption ("SUTVA").

Suppose the treatment has no effect on the outcomes:

$$
H_{0}: Y_{i}(0)=Y_{i}(1)
$$

How to test?
(1) Choose test statistic, $t(z, y)$; e.g., diff in means, or OLS using X as control.
(2) Build the randomization distribution: $F_{R}=\left\{t\left(\mathrm{z}^{\prime}, \mathrm{Y}\right): \mathrm{z}^{\prime} \sim \mathrm{D}\right\}$.
(3) pval $=1-F_{R}(t(\mathrm{Z}, \mathrm{Y}))$.

An assessment of FRT

Major benefits:

- The test is exact in finite samples. No asymptotics.
- Not necessary to have correct Y-model specification.
- The test is robust. Same answer under transformations of Y. (cf. regression/ML on log Y may yield completely different results than on Y)

Some disadvantages:

- Can only test "strong" hypotheses. (Currently, a lot of research activity in this area).
- Cannot generalize to population. (Personal opinion: this is a feature, not a bug.)

Complex Systems - Interference

A crucial assumption in causal inference (model- or design-based) has been SUTVA: For every unit i, there are only two potential outcomes $Y_{i}(0), Y_{i}(1)$ under treatment or control, i.e.,

$$
Y_{i}=\left\{\begin{array}{l}
Y_{i}(0) \text { when } Z_{i}=0 \\
Y_{i}(1) \text { when } Z_{i}=1 .
\end{array}\right.
$$

However, in many problems there is treatment interference. (spillovers, peer effects, contagion, dynamics etc.)
Under interference, a unit is exposed to "something more" than Z_{i}.
It is exposed to a sum effect from the entire population treatment, Z.

Think of a vaccine trial. A control unit (unvaccinated) is "protected" by treated units (vaccinated) in proximity.

Some more examples earlier.

Example 1 - Hypotheses for spillovers

Under interference, every unit is exposed to "something more" than Z_{i}.
A popular convention is to call this treatment exposure, $f_{i}(Z) \in \mathbb{F}$.

Although not necessary, it is useful to think that the outcomes are the same between any two z, z^{\prime} as long as $f(z)=f\left(z^{\prime}\right)$.
— effective treatment (Manski, 2009), exclusion restriction, etc.

Examples of treatment exposure:

- $f_{i}(z)=z_{i}$. Standard setting. No interference.
- $f_{i}(z)=z_{i}+\gamma \sum_{j \in \text { household }_{i}} z_{j}$. Clustered design.
- $f_{i}(z)=z_{i}+\gamma \sum_{j \in \text { city }_{i}} z_{j} / \mid$ city $_{i} \mid$. Saturation design.
- $f_{i}(\mathrm{z})=\left(z_{i}, \mathrm{Z}_{\text {household }_{i}}\right)$. Multivalued exposure.

Wait, could I just fit a regression?

Indeed, a popular approach is to fit:

$$
Y_{i}=\alpha+\beta Z_{i}+\gamma \underbrace{f_{i}(Z)}_{\text {exposure }}+\delta^{\prime} X_{i}+\epsilon_{i} .
$$

- As before, model specification is crucial.
- $f_{i}(\mathrm{Z})$ may have a complex correlation structure with other covariates, and possibly an underlying network.
- Cannot accurately quantify uncertainty, in general. (cf. simple linear example in the introduction)
- Asymptotics on $\hat{\gamma}$ may well be intractable.

Finally, it is not uncommon to use a model with Y s on the "left and right" of the regression. This is almost never a good idea. (Angrist, 2019)

Example 1 - Hypotheses for spillovers

In many settings, we want to test whether the exposures in a set \mathbb{F}_{0} are equivalent.

This may be expressed as:

$$
H_{0}: Y_{i}(\mathrm{z})=Y_{i}\left(\mathrm{z}^{\prime}\right) \text { for all } i, \mathrm{z}, \mathrm{z}^{\prime} \text { st } f_{i}(\mathrm{z}), f_{i}\left(\mathrm{z}^{\prime}\right) \in \mathbb{F}_{0} .
$$

(Manski, 2009), (Aronow, 2012), (T. and Kao, 2013), (Bowers et al., 2013), (Athey et al., 2019), Basse et al, 2019), (Puelz et al, 2021).

When $\mathbb{F}_{0}=\mathbb{F}$ then the problem reduces to the classical FRT.
If $\mathbb{F}_{0} \subset \mathbb{F}$ we run into problems. (the null is "weak")

I will illustrate with the Medellin example. (Collazos et al, 2019).

Illustration from Medellin

Crime spillovers from nearby treated streets on control streets?

Here, $\mathbb{F}_{0}=\{$ "control-spillovers", "pure-control" $\}$ where

- "control-spillovers" : $z_{i}=0$ and $\sum_{j: d(i, j)<125 \mathrm{~m}} z_{j}>0$;
- "pure-control" : $z_{i}=0$ and $\sum_{j: d(i, j)<125 \mathrm{~m}} z_{j}=0$.

FRT problems under interference

Suppose we resample z^{\prime} in the FRT as shown below:

The exposure of i is not in \mathbb{F}_{0}. Thus, $Y_{i}\left(z^{\prime}\right)$ cannot be imputed under H_{0}.
Main insight of recent literature: We have to condition on a subset of units/assignments where imputation is possible -"focal units" in (Athey et al, 2019).

Conditioning the FRT for spillovers

Puelz et al. (2021) developed a general method to construct such valid conditioning for FRTs under spillovers.
Connect every pair (i, z) iff $f_{i}(\mathrm{z}) \in \mathbb{F}_{0} \Rightarrow$ null exposure graph.

- The NE graph encodes the problem structure.
- The density of the graph reveals the "support" for testing H_{0}. (is H_{0} easy or hard to test?)
- An edge in NE is equivalent to imputability. Any FRT for spillovers needs to condition on a biclique of the graph.

FRT for spillovers

This leads to the following modifications of the classical FRT.

- To test H_{0} : "Are exposures in \mathbb{F}_{0} equivalent?"
(1) Calculate NE graph. This is uniquely determined by the H_{0} being tested.
(2) Calculate a "biclique decomposition" of NE. Let C be the one that contains the realized assignment, Z , and $U=$ units in C; (focal units)
$\tilde{\mathrm{D}}=\mathrm{D}(\mathrm{z} \mid C)=$ design conditional on assignments of biclique.
(3) Choose test statistic, $t(z, y)$ using only units in U.
(4) Build randomization distribution: $F_{R}=\left\{t\left(\mathrm{z}^{\prime}, \mathrm{Y}\right): \mathrm{z}^{\prime} \sim \tilde{\mathrm{D}}\right\}$.
© pval $=1-F_{R}(t(\mathrm{Z}, \mathrm{Y}))$.

This inherits all the nice properties of classical FRTs in testing for spillovers.

Medellin application

- treated units
- "pure-control" units - "control-spillovers"
- focal units

Only units in the outskirts and the cit center are pertinent to testing H_{0}.

The picture reveals a complex conditioning structure for this particular H_{0}. A regression approach uses all data, even from units not pertinent to H_{0}. Its validity crucially relies on correct specification.

Spin-off 1: Diagnostic

This gives us an idea to "warn" the user when H_{0} is hard to test.

Spin-off 1: Diagnostic

This gives us an idea to "warn" the user when H_{0} is hard to test.
Example: "Effects of a large-scale social media advertising campaign on holiday travel and COVID-19 infections: a cluster randomized controlled trial" (Breza et al, 2021)

Spin-off 2: Improving the experimental design

We could use the NE graph to optimize the experimental design for a given null hypothesis, H_{0}.

Spin-off 2: Improving the experimental design

We could use the NE graph to optimize the experimental design for a given null hypothesis, H_{0}.

Example: Suppose a design space $=\left(p_{0}, p_{1}\right) \in[0,1]^{2}$ where $p_{0}=$ treatment prob. in city-center, and $p_{1}=$ treatment prob. in outskirts.
Left: Power calculated under a simulated model for Y over the design space. (darker=higher power).
Right: Average clique sizes in NE graph over the design space.

Example 2: Experiments for long-term effects under learning/habituation

An online service aiming to improve CTR needs to carefully design an experiment to extrapolate for long-term effects.

For example, (Honhold et al, 2015) proposed designs to estimate "ad blindness" at Google.

Using potential outcomes

Potential outcomes can serve as a foundation again.
They have a temporal component here.
Let $Y_{i t}\left(Z_{i}\right)$ denote the outcome of unit i at time t under assignment $Z_{i}=\left(Z_{i 1}, \ldots, Z_{i T}\right)$, a sequence of treatment from $t=1$ to $t=T$.

Assumption 1 (no-interference)

Assumption 2 (non-anticipating outcomes)

$$
Y_{i t}\left(Z_{i}\right)=Y_{i t}\left(Z_{i: t}\right) \quad \text { e.g } \quad Y_{i 3}\left(Z_{i}\right)=Y_{i 3}\left(\square^{1} \square^{2}{ }^{2} \quad{ }^{3}\right)
$$

Design space

In this setting, a unit is to be exposed to a sequence of treatments.
This will help us define and estimate habituation effects.

Here, $1=$ active treatment at all time points; $0=$ control at every t. $e_{t}=$ "pulse treatment" at t. It is $e_{t}=(0, \ldots, 1, \ldots, 0)$, i.e., " 1 " only at t.

Using potential outcomes

The following decomposition is the target of inference:

$$
\lambda_{t}=\frac{1}{N} \sum_{i}\left[Y_{i t}(1)-Y_{i t}\left(e_{t}\right)\right], \quad \delta_{t}=\frac{1}{N} \sum_{i}\left[Y_{i t}\left(e_{t}\right)-Y_{i t}(0)\right]
$$

That is, $\lambda_{t}=$ habituation effect, and $\delta_{t}=$ instantaneous treatment effect.
We would like to design an experiment to estimate $\left\{\left(\lambda_{t}, \delta_{t}\right)\right\}_{t=1}^{T}$.

The "loss function" is simply $L(\theta)=\sum_{t}\left(\hat{\lambda}_{t, \theta}-\lambda_{t}\right)^{2}+\left(\hat{\delta}_{t, \theta}-\delta_{t}\right)^{2}$. Here, θ are the experimental parameters, and the "hats" are sample estimators of λ_{t}, δ_{t}.

Minimax Design

Theorem (Basse et. al., 2022)

If \mathbb{Y} is permutation invariant, then the minimax design is a completely randomized design assigning units to various treatment arms as follows:

$$
\begin{align*}
N_{1} & =O(N / \sqrt{T}) \\
N_{0} & =O(N / \sqrt{T}) \\
N_{e_{t}} & =O(N / T), \quad t=2, \ldots, T \tag{1}
\end{align*}
$$

This result shows that the minimax design needs to be imbalanced in the presence of temporal effects.

For instance, $Z_{i}=0$ still gives information about $Y_{i t^{\prime}}\left(e_{t}\right)$ for any $t^{\prime}<t$ because of the no anticipation assumption.

Example ($T=30, N=10000$)

Optimality gap: May range from $O(1)$ to $O(T)$ depending on the actual outcome model.

Concluding remarks

Causal inference in complex systems is under-developed.
Standard practice does not account for interference, or treatment dynamics, habituation, etc.

But it should!

The methods in this talk aim to address the complexities of some real-world problems.

But these methods are but a tiny sample of what is possible, and have important limitations.

More challenges ahead: Marketplace dynamics, game theory etc.

Thank you!

Basse, Ding, Toulis, "Minimax designs for causal effects in temporal experiments with treatment habituation" (Biometrika, 2022)

Puelz, Basse, Feller, Toulis "A graph-theoretic approach to randomization tests of causal effects under interference", (JRSS-B, 2021)

Basse, Feller, Toulis, "Randomization tests of causal effects under interference" (Biometrika, 2019)

Toulis and Parkes, "Long-term causal effects via behavioral game theory" (NIPS, 2016)

