
Randomization tests of causal effects

under interference between units

Panagiotis (Panos) Toulis

panos.toulis@chicagobooth.edu

Econometrics and Statistics

University of Chicago, Booth School of Business

Joint work with Guillaume Basse (Harvard), Avi Feller (UC Berkeley)

1 / 32



Motivation: reducing absenteeism at school

Roger and Feller (2018) ran a two-stage randomized experiment, aiming

to engage parents of students who were frequently absent.

Data indicated strong primary effect for targeted student.

Also interested in spillovers to siblings of the targeted student.

2 / 32



Absenteeism design
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Outline

Goal: Test for causal effects on treated and exposed units.

1 Classical causal inference with no interference.

2 Challenges when interference is present.

3 Randomization tests with interference.

4 Application to absenteeism (and beyond).
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Classical causal inference — no interference

There are N units. Unit i is assigned to treatment Zi ∈ {0, 1}.

Z = (Z1, . . . , ZN ) ∈ {0, 1}N is the full treatment vector.

pr(Z) ∈ [0, 1) is the experimental design.

No treatment interference assumption (Cox, 1958):

Yi(1) is the potential outcome of i when Zi = 1 (treatment);
Yi(0) is its potential outcome when Zi = 0 (control).

Causal effect of treatment on i may be defined as

Yi(1)− Yi(0).

∗ Only one potential outcome can ever be observed⇒ fundamental problem of

causal inference.
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Two approaches to causal inference

Model-based inference; e.g.,

Yi(Zi) = β0 + β1Zi + . . .+ εi.

In experimental studies, E(β̂1) = E(Yi(1)− Yi(0))— average treatment

effect (ATE).

But standard errors depend heavily on the model.

In observational studies, most methods still rely on regression while trying to

emulate experimental assignment of treatment (e.g., instrumental variables,

propensity score matching).

In randomization inference, Y is fixed, only Z is random. Standard errors

reflect actual variation from treatment assignment.
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Illustration

Zi ∈ {self-fertilized, cross-fertilized}; Yi = height in cm.

Z = Cross Z = Self

unit treat. obs. outcome potential outcomes

i Zi Yi Yi(0) Yi(1)
1 0 15 15 ?

2 1 20 ? 20

3 1 20 + ε ? 20 + ε
4 0 15− ε 15− ε ?

Could estimate the causal effect through linear regression of Y ∼ Z.

Point estimate: 5 + ε cm (diff. in means).

Standard error is O(ε). Possibly misleading as it depends on how well a line fits

the data.
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Randomization inference (Fisher, 1935)

unit treat. obs. outcome potential outcomes

i Zi Yi Yi(0) Yi(1)
1 0 15 15 ?

2 1 20 ? 20

3 1 20 + ε ? 20 + ε
4 0 15− ε 15− ε ?

Fisher considered the null hypothesis of no treatment effect:

H0 : Yi(0) = Yi(1).
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Randomization inference (Fisher, 1935)

unit treat. obs. outcome potential outcomes

i Zi Yi Yi(0) Yi(1)
1 0 15 15 15

2 1 20 25 20

3 1 20 + ε 20 + ε 20 + ε
4 0 15− ε 15− ε 15− ε

Fisher considered the null hypothesis of no treatment effect:

H0 : Yi(0) = Yi(1).

Under H0 the missing data can be filled in. Now, we can produce estimates of

causal effect under counterfactual randomized assignments.
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Randomization inference (Fisher, 1935)

unit treat. obs. outcome potential outcomes

i Z ′
i Y ′

i Yi(0) Yi(1)
1 1 15 15 15

2 0 20 25 20

3 1 20 + ε 20 + ε 20 + ε
4 0 15− ε 15− ε 15− ε

e.g., say Z ′ = (1, 0, 1, 0) as counterfactual assignment. Counterfactual outcomes Y ′

can be calculated under H0. In fact, Y
′ = Y . Regress Y ′ ∼ Z ′, repeat..

Randomization distribution of regression estimate:

-(5+e) -e 0 +e (5+e)
16.7% 16.7% 33.3% 16.7% 16.7%

So, −(5 + ε) is equally likely as 5 + ε. Standard error = const.+O(ε) > O(ε).
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Fisher exact test

1 Pick a test statistic T (e.g., diff. in means).

2 Observed value T obs = T (Z, Y ).
3 For r = 1, 2, . . . ,M :

(i) Sample Z ′ ∼ pr(Z ′) according to design.
(ii) Store Tr = T (Z ′, Y ).

Summarize: e.g., p-value = E
(
I{Tr ≥ T obs}

)
.

Z = Cross Z = Self Notes:

Finite-sample validity: we need T (Z′, Y ′)
d
= T (Z, Y ).

For any fixed Y ,

T (Z′, Y ′)
H0= T (Z′, Y )

d
= T (Z, Y ).

No model on Y is necessary. No asymptotic/normal/other approximations.

Robust to any order-preserving transformations of Y .
Randomness comes only from design (which we control).

Next: Fisher exact tests with interference?
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Interference

There is interference when the outcome of a unit may be affected by the

treatment assignment of others.

Unlikely that interference is not there: (social) networks between people,

firms, schools, etc., enable interference.

Peer effects, contagion, spillovers.., are special cases.
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Causal inference under interference

New notation: Yi(Z) is the potential outcome of unit i under full treatment
assignment vector Z.

There are 2N possible potential outcomes since Z ∈ {0, 1}N . Causal inference
is impossible without stability assumptions; e.g., “Stable treatment unit value

assumption” (Rubin, 1974)

Yi(Z) = Yi(Z
′) if Zi = Z ′

i;

⇒ implies no interference.

Randomization inference is tricky: H0 : Yi(...) = Yi(...) ?

Although unit receives treatment Zi, it is exposed to a more complex treatment

version. Need to define what this exposure is.
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Exposures

We don’t believe that every different Z implies a different exposure for a

particular unit. More reasonable that there are equivalence classes.

An exposure mapping describes such equivalence through a function

hi(Z) : {0, 1}N → E , where E is a finite set of possible exposures;

e.g., if a network G is present we could define hi(Z) = (Zi, G
>
i Z), where

G>
i Z = # i’s treated neighbors under Z (Toulis & Kao, 2013).
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Exposures in absenteeism study

Assumption 1: No interference between households.

Assumption 2: In a treated household, the identity of the treated unit does not

matter (Manski’s “anonymous interactions”).

Assumptions 1 + 2 imply the exposure mapping:

hi(Z) = (Hji , Zi), where Riji = 1∗.

∗ Rij = residence index for unit i in household j; andHj =
∑

i ZiRij = household treatment.

Three potential outcomes:

Yi(0, 0) ≡ Yi(control) = control unit in control household;
Yi(1, 0) ≡ Yi(exposed) = control unit in treated household;
Yi(1, 1) ≡ Yi(treated) = treated unit in treated household.
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Exposures in absenteeism study
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Hypotheses for randomization tests

These exposure mappings now enable definition and testing of causal effects

in the absenteeism study.

No effects whatsoever: (i.e., control = exposed = treated)

Yi(0, 0) = Yi(1, 0) = Yi(1, 1).

No primary effect: (i.e., control = treated)

Yi(0, 0) = Yi(1, 1).

No spillover effect: (i.e., control = exposed)

Yi(0, 0) = Yi(1, 0).
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Fisher test for “no effect whatsoever”
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Fisher test for “no effect whatsoever”
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Fisher test for “no effect whatsoever”

∗Works without problem but null is strong.
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Fisher test for primary effect
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Fisher test for primary effect
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Fisher test for primary effect
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Problem with interference

Under interference, there are multiple potential exposures but null hypothesis

is about only two of them (usually).

Thus, null hypotheses are no longer sharp⇒ cannot impute potential

outcomes (i.e., can’t do Y ′ = Y any more.)

Consequence: If imputation is not possible either drop units or assignments.

The idea is to perform the test conditional on subsets of units and assignments

such that H0 is conditionally sharp (Aronow, 2012; Athey et. al., 2017).

20 / 32



Problem with interference

Under interference, there are multiple potential exposures but null hypothesis

is about only two of them (usually).

Thus, null hypotheses are no longer sharp⇒ cannot impute potential

outcomes (i.e., can’t do Y ′ = Y any more.)

Consequence: If imputation is not possible either drop units or assignments.

The idea is to perform the test conditional on subsets of units and assignments

such that H0 is conditionally sharp (Aronow, 2012; Athey et. al., 2017).

20 / 32



Problem with interference

Under interference, there are multiple potential exposures but null hypothesis

is about only two of them (usually).

Thus, null hypotheses are no longer sharp⇒ cannot impute potential

outcomes (i.e., can’t do Y ′ = Y any more.)

Consequence: If imputation is not possible either drop units or assignments.

The idea is to perform the test conditional on subsets of units and assignments

such that H0 is conditionally sharp (Aronow, 2012; Athey et. al., 2017).

20 / 32



Conditional randomization tests under interference

1 Sample a (sub)set of units F ⊂ {1, . . . , N} independently of Z.
Known as focal units.

2 Define test statistic T only on units in F .

3 Compute set of assignments for which H0 is sharp:

ZF =
{
Z ′ : Yi(Z

′)
H0= Yi(Z), for every i ∈ F

}
.

4 Run Fisher test sampling uniformly from ZF .

∗ Test is straightforward (conceptually) and valid.

∗We need T (Z ′, Y ′)
d
= T (Z, Y ) | F,ZF . It holds:

T (Z ′, Y ′)
(2)
= T (Z ′

F , Y
′
F )

(3)
= T (Z ′

F , YF )
d
= T (ZF , YF ) = T (Z, Y ).
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A valid test (Aronow, 2012; Athey et. al., 2017)
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Problems with current methods

Power. Focal units are selected independently of observed Z. So, it can
happen that H0 is not sharp for some of them.

These focal units are effectively dropped from the study. Implies loss of power.

Computation. Furthermore, ZF needs to be calculated explicitly. The

resulting test is not a permutation test, in general, and so it is not

computationally feasible.

e.g., when households have unequal sizes, the test of (Aronow 2012, Athey

et.al., 2017) is not a permutation test.
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Permutation tests

Why permutation tests are hard to achieve under interference?

Permutation tests rely on symmetries in experimental design of treatment

assignment (e.g., complete randomization across households, within

households, etc.)

Under interference, a permutation test requires symmetries on the “exposure

level”. However, the design offers symmetries on the “ treatment level”.

In other words, in an experiment we randomize Zi but we would like to have

randomized hi(Z).

Goal: How to achieve powerful permutation tests?
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Conditioning mechanisms

Formalize conditioning of randomization test through conditioning event C:
C = (F,Z)
F = focal units in the test, and

Z = assignments in the test.

Then, conditional distribution of Z given C is:

P (Z|C) = P (C|Z)︸ ︷︷ ︸
conditioning mechanism

× pr(Z)︸ ︷︷ ︸
experiment design

Analyst chooses P (C|Z), the conditioning mechanism. It should correct
asymmetries in the design, so that a permutation test is possible.

Current methods use the following simple mechanism:

P (C|Z) = P (F )× degen(Z = ZF ).

More complex CM can lead to important improvements.
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Permutation tests for absenteeism study

Test for primary effect Hp
0 :

1 In a treated household, choose the exposed unit as focal.

2 In a control household, choose any one unit as focal at random.

3 Perform a test by permuting exposures on the focal units.

Conditioning mechanism is P (C|Z) = P (F |Z)P (Z|F,Z) where:

∗ P (F |Z) is described in Step (1) and is simple. Conditioning on observed Z
allows having to drop focal units (we select only “blue” and “white” units).

∗ P (Z|F,Z) is a permutation of exposures of focal units, so there is no need
to calculate Z explicitly.
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Permutation test for Hp
0
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Why this works

Theorem

Let E be the exposure vector for focal units. Suppose that

P (E) ∝ 1 and P (F |Z)P (Z|E) ∝ 1.

Then, P (E|C) ∝ 1 and the conditional randomization test given C can be implemented as a

permutation test.

∗ In our test, Ea.e.
= H (where H = household assignment) because we keep the

focal from every household. Thus, P (E) ∝ 1 because the design randomizes
on the household level.

∗ It holds, P (Z|E) = P (Z|H) =
∏

j:Hj=1 1/nj . Implies asymmetry: treated

units less likely to come from larger household.

∗ Correct asymmetry by defining P (F |Z) =
∏

j:Hj=0 1/nj .

∗ Then, P (F |Z)P (Z|E) =
∏

j 1/nj ∝ 1. Implies permutation test.
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Simulation – Power for test of no primary effect

We set 500 households with 10 units each.
Outcome model: Yi(1, 1) = Yi(0, 0) + τ , and Yi(0, 0) ∼ N (0, σ2).
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Simulation – Power for test of no primary effect
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Absenteeism data – distribution of randomization p-values
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Distribution of p-values over choices of focals for testingHp
0 (left) andHs

0 (right).

For primary effect test, conditional focal selection rejects 91% vs 65% for random focals.
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Conclusion

Randomization inference is appealing – makes minimal assumptions.

But hard when there is interference.

Current methods are impractical. They lose power and cannot be implemented

as permutation tests, in general.

Conditioning mechanisms offer a principled guide to address both issues.

Future work:

Aggregate testing across conditioning events for same H0.

Aggregate testing across multiple H0.

Extend to more complex interference (e.g., crime intervention studies).
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Thank you!
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Simulation – Power for test of no spillover effect
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