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Question

How does the intervention affect crime?
→ direct effect?
→ spillovers to adjacent streets?

We will address these through hypothesis testing.

We would like to be (outcome) model-free, so we will use the
randomization method of inference.
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Notation and a classical test

N units (streets) indexed by i = 1, 2, . . . ,N.

Define observed data:
Z = (Z1, . . . ,ZN) as binary treatment assignment;
Y = (Y1, . . . ,YN) as vector of observed outcomes.

The potential outcome of unit i under assignment z : Yi (z)
i.e., total crime score

Assume no interference: Yi (z) depends only on zi .
⇒ Only two potential outcomes, Yi (0),Yi (1), for every i .

Does treatment have an effect?
H0 : Yi (0) = Yi (1) for every i .
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Fisher randomization test (1935)

H0 : Yi (0) = Yi (1) for every i .

The procedure:

Choose test statistic T = T (y , z) (e.g., difference in means).
1. Tobs = T (Y ,Z ).

2. Sample Z
′ ∼ pr(Z

′
), store Tr = T (Y

′
,Z

′
)
H0= T (Y ,Z

′
).

3. p-value = E [1{Tr ≥ Tobs}].

Proof of validity:

T (Y
′
,Z

′
)
H0= T (Y ,Z

′
)
d
= T (Y ,Z )

“Tobs ∼ Tr (under null)”
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Advantages of Fisherian randomization

◦ Exact. The test is valid in finite samples.

◦ Minimal assumptions. No model for Y .

◦ Robust. Test gives the same (or very similar) answers with
different Y -scales (the same cannot be said for regression).
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No interference assumption is too strong ...

Assume: Yi (z) depends only on zi (no interference)
→ not very realistic for our application.

In reality, Yi (z) is exposed to (depends on) multiple parts of z .

One way to express more potential outcomes is through the
concept of exposure functions.
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Treatment exposures

For any given Z , unit i is exposed to “something more” than Zi .
We assume unit i ’s exposure is defined by a function:

fi : {0, 1}N → E .

E is the set of possible exposures (short-range spillover,
medium-range spillover, pure control, etc.)

We can now ask questions in terms of exposures!
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Question: Is there a short-range spillover effect?

H0 : Yi(Z ) = Yi(Z
′) for every i ,Z ,Z ′,

such that fi(Z ), fi(Z ′) ∈ {short, control}.

fi (Z ) :=


short Zi = 0, disti < 125m
control Zi = 0, disti > 500m
neither else

disti := distance to closest treated street.
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Can we use the classical Fisher test again? Not quite ...

Recall, observed T ∼ randomized T for things to work:

T (Y
′
,Z

′
)�
�A
A
H0=T (Y ,Z

′
)
d
= T (Y ,Z )

The null only assumes 2 of the 3 exposures have equal outcomes

H0 : Yi (short) = Yi (control)
?
= Yi (neither) for every i

In this case, the null is not sharp. We cannot impute potential
outcomes Y

′
freely under any Z

′ .
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Testing Yi(short) = Yi(control), ∀i

Given a null hypothesis and assignment from pr(Z ), we know
which units are exposed to short or control using fi (·).

This is a binary relationship!
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Units Assignments



The null exposure graph

1

2

3

1

2

3

4

5

6

7

8

16

Exposure short is light blue
Exposure control is navy

edge (i , j) denotes that unit i is
exposed to {short, control}
under assignment j .

Units Assignments



The null exposure graph

1

2

3

1

2

3

4

5

6

7

8

16

Exposure short is light blue
Exposure control is navy

edge (i , j) denotes that unit i is
exposed to {short, control}
under assignment j .

Units Assignments



The null exposure graph

1

2

3

1

2

3

4

5

6

7

8

16

Exposure short is light blue
Exposure control is navy

edge (i , j) denotes that unit i is
exposed to {short, control}
under assignment j .

Units Assignments



The null exposure graph

1

2

3

1

2

3

4

5

6

7

8

16

Exposure short is light blue
Exposure control is navy

edge (i , j) denotes that unit i is
exposed to {short, control}
under assignment j .

Units Assignments



The null exposure graph

1

2

3

1

2

3

4

5

6

7

8

16

Exposure short is light blue
Exposure control is navy

edge (i , j) denotes that unit i is
exposed to {short, control}
under assignment j .

Units Assignments



The null exposure graph

1

2

3

1

2

3

4

5

6

7

8

16

Exposure short is light blue
Exposure control is navy

edge (i , j) denotes that unit i is
exposed to {short, control}
under assignment j .

Units Assignments



The null exposure graph

1

2

3

1

2

3

4

5

6

7

8

16

Exposure short is light blue
Exposure control is navy

edge (i , j) denotes that unit i is
exposed to {short, control}
under assignment j .

Units Assignments



Our main contribution: The null exposure graph
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Notice that {{U2,U3}, {A2,A3}}
is a complete subgraph (biclique).

Units Assignments



Our main contribution: The null exposure graph

1

2

3

1

2

3

4

5

6

7

8

18

If we run the test within the
biclique containing Zobs, the
null will be sharp!

Units Assignments



Returning to the map
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The observed assignment
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Zobs

384 streets are
treated with
increased police
patrolling



Short-range spillover units (short)
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Using network
geometry, color
units exposed to
short under Zobs



Pure control units (control)
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Using network
geometry, color
units exposed to
control under
Zobs



We can remake these pictures for every assignment Z drawn
from pr(Z) ...

→ The output is our null exposure graph!
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Null exposure graph and biclique
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Clique-based randomization test

→ A null exposure graph uniquely defined given H0.

→ A test statistic T = T (y , z).

1. Decompose: Compute biclique decomposition of null
exposure graph. Pick out biclique with Zobs, call it C .

2. Condition: Compute test statistic values with units and
assignments only in C .

3. Summarize: p-value = EZC
[1{TC ≥ Tobs}].

Here, P(ZC ) ∝ pr(ZC )1{ZC ∈ C}
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Conditioning in this way gives a valid method!

Clique test statistics: TC = T (YC ,ZC )

*T is defined only in C by condition step in method

For every Z ,Z
′
, we need to show T (Y

′
,Z

′
)
d
= T (Y ,Z ) | C

Proof:

T (Y
′
,Z

′
)
∗
= T (Y

′
C ,Z

′
C )

H0= T (YC ,Z
′
C )

d
= T (YC ,ZC )

∗
= T (Y ,Z )
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Related work
We can use our framework to describe related work:

I Aronow (2012) and Athey et al (2018) effectively propose to
randomly sample focal units on one side, and then find the
maximal induced clique to condition on.

- General procedure but the random selection does not exploit
the problem structure ⇒ Loss of power.

I Basse et al (2019) develop a clique decomposition that
provably leads to permutation test in clustered interference.

- Case-by-case analysis. Cannot generalize.
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A test of the null on Medellin data
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Concluding thoughts

◦ New method is presented for testing causal effects under
general interference using null exposure graphs and bicliques.

◦ Structure is placed on null hypothesis through exposure
functions.

◦ Future work: understand power properties; optimized biclique
decomposition; more hypotheses.
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Thank You!

Working paper “A Graph-Theoretic Approach to Randomization
Tests of Causal Effects Under General Interference"

Athey, Eckles, Imbens, "Exact p-Values for Network Interference" (JASA,
2018)

Basse, Feller, Toulis, "Randomization tests of causal effects under
interference" (Biometrika, 2019)

Aronow, "A general method for detecting interference between units in
randomized experiments." (Sociol. Methods Res., 2012)
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Extra slides
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Why is this a valid method?

Clique test statistics: TC = T (YC ,ZC )

*T is defined only in C by condition step in method

For every Z ,Z
′
, we need to show T (Y

′
,Z

′
)
d
= T (Y ,Z ) | C

Proof:

T (Y
′
,Z

′
)
∗
= T (Y

′
C ,Z

′
C )

H0= T (YC ,Z
′
C )

d
= T (YC ,ZC )

∗
= T (Y ,Z )
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Experiment and data

Units and treatment assignment

◦ 37,055 total streets (units)

◦ 967 streets are identified as crime “hotspots”

◦ 384 are treated with increased police presence

Outcomes and covariates

◦ Crime counts on all streets (murders, car and motorbike thefts,
personal robberies, assaults)

◦ Survey data on hotspot streets

◦ Characteristics of hotspots (distance from school, bus stop, rec
center, church, neighborhood, ...)

33

Access to
randomizations
based on the
design, pr(Z )



Considerations / alternative approaches

◦ Finding bicliques is hard, actually, NP-hard1

◦ The method is constructive, still needs to be optimized

i.e., different biclique decompositions will have different power
properties, but all are valid!

◦ Other conditional testing methods:
Aronow 2012, Athey et al. 2018. (Roughly) equivalent to randomly
sampling units one one side, then computing the clique that
contains those units and obs Z .
⇒ loses power.
Basse et al. 2019. Biclique sampling can depend on obs Z .
⇒ easier when interference has structure.

1We use Binary Inclusion-Maximal Biclustering Algorithm, which uses a
divide and conquer method to find bicliques. 34



What about simulated data?

We consider a partial interference setting.

Suppose we have N observations living in K blocks. The blocks
could be classrooms or households.

Experiment: Randomly treat K/2 blocks. Within treated
households, randomly treat 1 observation.

Do outcomes in control households differ from outcomes of
control observations in treated households?

35
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The null and competing methods

H0 : Yi(control) = Yi(exposed), ∀i

1. Athey et. al. JASA (2018): sample one focal per household.
Run permutation test.

2. Basse et. al. Biometrika (2019): for treated households –
sample one untreated focal, for untreated, sample one focal. Run
permutation test.

3. Clique – proposed method.
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Power comparison: Yi(control) = Yi(exposed) + τ

N = 300,K = 20 N = 300,K = 30 N = 300,K = 75.
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The clique method improves upon existing methods as the
block size increases!
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