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1. R code. All experiments were run using the R package sgd, which
implements explicit SGD and implicit SGD defined in Eqs. (1) and (4) of the
main paper (Toulis and Airoldi, 2016). The package is published at CRAN
here http://cran.r-project.org/web/packages/sgd/index.html.

2. Useful lemmas. For convenience we restate here the assumptions
underlying the technical results of the main paper.

Assumption 2.1. The explicit SGD procedure in Eq. (1) and the implicit
SGD procedure in Eq. (4), both defined in the main paper, operate under a combi-
nation of the following assumptions.

(a) The learning rate sequence {γn} is defined as γn = γ1n
−γ , where γ1 > 0 is the

learning parameter, and γ ∈ (0.5, 1].

(b) For the log-likelihood log f(Y ;X, θ) there exists function ` such that log f(Y ;X, θ) ≡
`(Xᵀθ;Y ), which depends on θ only through the natural parameter Xᵀθ.

(c) Function ` is concave, twice differentiable almost surely wrt natural parameter
Xᵀθ and Lipschitz with constant L0 wrt θ.

(d) For observed Fisher information matrix În(θ) = −∇2`(Xᵀ
nθ;Yn) there exists

constant F > 0 such that trace(În(θ)) ≤ F almost surely, for all θ. The Fisher

information matrix I(θ?) = E
(
În(θ?)

)
has minimum eigenvalue λf > 0 and

maximum eigenvalue λf <∞. Typical regularity conditions hold (Lehmann and
Casella, 1998, Theorem 5.1, p.463).

(e) Every condition matrix Cn is a fixed positive-definite matrix, such that Cn =
C+O(γn), where ||C|| = 1, C � 0 and symmetric, and C commutes with I(θ?).
For every Cn, min eig(Cn) = λc > 0, and max eig(Cn) = λc <∞.

(f) Let Ξn = E (∇ log f(Yn;Xn, θ?)∇ log f(Yn;Xn, θ?)
ᵀ | Fn−1), then ||Ξn − Ξ|| =

O(1) for all n, and ||Ξn − Ξ|| → 0, for a symmetric positive-definite Ξ. Let
σ2
n,s = E

(
I||ξn(θ?)||2≥s/γn ||ξn(θ?)||2

)
, then for all s > 0,

∑n
i=1 σ

2
i,s = o(n) if

γ = 1, and σ2
n,s = o(1) otherwise.
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Next, we prove lemmas on recursions that will be useful for subsequent
analysis. All results are stated under a combination of Assumptions 2.1.

Lemma 2.1. Consider a sequence bn such that bn ↓ 0 and
∑∞

i=1 bi =∞.
Then, there exists a positive constant K > 0, such that

n∏
i=1

1

1 + bi
≤ exp(−K

n∑
i=1

bi).(1)

Proof. The function x log(1+1/x) is increasing-concave in (0,∞). From
bn ↓ 0 it follows that log(1 + bn)/bn is non-increasing. Consider the value
K = log(1 + b1)/b1. Then, log(1 + b1)/b1 ≥ log(1 + bn)/bn implies that
(1 + bn)−1 ≤ exp(−Kbn). Successive applications of this inequality yields
Ineq. (1).

Lemma 2.2. Consider sequences an ↓ 0, bn ↓ 0, and cn ↓ 0 such that,
an = o(bn),

∑∞
i=1 ai = A < ∞, and there is n′ such that cn/bn < 1 for all

n > n′. Define,

δn =
1

an
(an−1/bn−1 − an/bn) and ζn =

cn
bn−1

an−1

an
,(2)

and suppose that δn ↓ 0 and ζn ↓ 0.
Consider a positive sequence yn > 0 that satisfies the following recursive

inequality,

yn ≤
1 + cn
1 + bn

yn−1 + an.(3)

Then, for every n > 0, there exist constants K0, n0 such that

yn ≤ K0
an
bn

+Qn1y0 +Qnn0+1(1 + c1)n0A,(4)

where Qni =
∏n
j=i(1 + ci)/(1 + bi), with Qni = 1 if n < i, by definition.

Proof. Pick a positive n0 such that δn+ζn < 1 and (1+cn)/(1+bn) < 1,
for all n ≥ n0. Also, define K0 = (1 + b1)(1− δn0 − ζn0)−1. We consider two
separate cases, namely, n < n0 and n ≥ n0, and then we will combine the
respective bounds.

Analysis for n < n0. We first find a crude bound for Qni+1. It holds,

Qni+1 ≤ (1 + ci+1)(1 + ci+2) · · · (1 + cn) ≤ (1 + c1)n0 ,(5)
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since c1 ≥ cn (cn ↓ 0 by definition) and there are no more than n0 terms in
the product. From Ineq. (3) we get

yn ≤ Qn1y0 +
n∑
i=1

Qni+1ai [by expanding recursive Ineq. (3)]

≤ Qn1y0 + (1 + c1)n0

n∑
i=1

ai [using Ineq. (5)]

≤ Qn1y0 + (1 + c1)n0A.(6)

This inequality also holds for n = n0.
Analysis for n ≥ n0. In this case, we have for all n ≥ n0,

(1 + b1) (1− δn − ζn)−1 ≤ K0 [by definition of n0,K0]

K0(δn + ζn) + 1 + b1 ≤ K0

K0(δn + ζn) + 1 + bn ≤ K0 [because bn ≤ b1, since bn ↓ 0]

1

an
K0(

an−1

bn−1
− an
bn

) +
1

an
K0

cnan−1

bn−1
+ 1 + bn ≤ K0 [by definition of δn, ζn]

an(1 + bn) ≤ K0an −K0

(
(1 + cn)an−1

bn−1
− an
bn

)
an ≤ K0(

an
bn
− 1 + cn

1 + bn

an−1

bn−1
).(7)

Now combine Ineq. (7) and Ineq. (3) to obtain

(yn −K0
an
bn

) ≤ 1 + cn
1 + bn

(yn−1 −K0
an−1

bn−1
).(8)

Define sn = yn − K0an/bn. Then, from Ineq. (8), sn ≤ 1+cn
1+bn

sn−1, where
1+cn
1+bn

< 1 since n ≥ n0. Let n1 be the smallest integer such that n1 ≥ n0 and
sn1 ≤ 0. If n1 does not exist then sn are all positive, and thus yn ≤ K0an/bn,
which satisfies Ineq. (3), for all n ≥ n0. If n1 exists then for all n ≥ n1, it
follows sn ≤ 0, and thus yn ≤ K0an/bn for all n ≥ n1. For n0 ≤ n < n1 all sn
are positive. Using Ineq. (8), we have sn ≤ (

∏n
i=n0+1

1+ci
1+bi

)sn0 = Qnn0+1sn0 ,
and thus

yn −K0
an
bn
≤ Qnn0+1sn0 [by definition of sn]

yn ≤ K0
an
bn

+Qnn0+1yn0 [because sn ≤ yn]

yn ≤ K0
an
bn

+Qn1y0 +Qnn0+1(1 + c1)n0A. [by Ineq. (6) on yn0 ](9)
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Combining this result with Ineq. (6) and Ineq. (9), we obtain

yn ≤ K0
an
bn

+Qn1y0 +Qnn0+1(1 + c1)n0A,(10)

since Qni = 1 for n < i, by definition.

Corollary 2.1. In Lemma 2.2 assume an = a1n
−α and bn = b1n

−β,
and cn = 0, where α > β, and a1, b1, β > 0 and α > 1. Then, there exists
n0 > 0 such that for all n ≥ n0,

yn ≤ 2
a1(1 + b1)

b1
n−α+β + exp(− log(1 + b1)φβ(n))[y0 + (1 + b1)n0A],(11)

where A =
∑

i ai < ∞, and φβ is defined as in Theorem (2.1) of the main
paper; i.e., φβ(n) = n1−β if β ∈ (0.5, 1), and φβ(n) = log n if β = 1.

Proof. For every n > 2 and γ ∈ (0.5, 1] it is easy to show through
induction that

(n− 1)−γ − n−γ ≤ 2n−1−γ ,(12)
n∑
i=1

i−γ ≥ φγ(n).(13)

By definition of δn and Ineq. (12),

δn =
1

an
(
an−1

bn−1
− an
bn

) =
1

a1n−α
a1

b1
((n− 1)−α+β − n−α+β) ≤ 2

b1
n−1+β.(14)

Also, ζn = 0 since cn = 0. For the rest of the proof we will suppose that
Ineq. (14) holds for every n since for n = 1 we can simply define δ1 ≤ 1/2.

Next, we take n0 = d(4/b1)1/(1−β)e so that δn < 1/2 and δn + ζn < 1
for all n ≥ n0. Therefore, K0 = (1 + b1)(1 − δn0)−1 ≤ 2(1 + b1); define
K0 = 2(1 + b1). Since cn = 0, it follows Qni =

∏n
j=i(1 + bi)

−1. Thus, for a
lower bound,

Qn1 ≥ (1 + b1)−n,(15)

and for an upper bound,

Qn1 ≤ exp(− log(1 + b1)/b1

n∑
i=1

bi), [by Lemma 2.1]

Qn1 ≤ exp(− log(1 + b1)φβ(n)). [by Ineq. (13)](16)
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Lemma 2.2, Ineq. (15) and Ineq. (16) imply that

yn ≤ K0
an
bn

+Qn1y0 +Qnn0+1(1 + c1)n0A [by Lemma 2.2]

≤ 2
a1(1 + b1)

b1
n−α+β +Qn1 [y0 + (1 + b1)n0A] [by Ineq. (15), c1 = 0]

≤ 2
a1(1 + b1)

b1
n−α+β + exp(− log(1 + b1)φβ(n))[y0 + (1 + b1)n0A],(17)

where the last inequality follows from Ineq. (16).

Lemma 2.3. Suppose Assumptions 2.1(b), (c), and (d) hold. Then, al-
most surely it holds

λn≥
1

1 + γnλcF
,(18)

||θim
n − θim

n−1||2 ≤ 4L2
0γ

2
n,(19)

where λn is defined in Theorem (3.1), and θim
n is the n-th iterate of implicit

SGD, defined by Eq. (4) in the main paper.

Proof. For the first part, from Theorem (3.1) we have

`′(Xᵀ
nθ

im
n ;Yn) = λn`

′(Xᵀ
nθ

im
n−1;Yn),(20)

where the derivative of the log-likelihood ` is with respect to the natural
parameter Xᵀθ. Using definition in Eq. (4),

θim
n = θim

n−1 + γnλn`
′(Xᵀ

nθ
im
n−1;Yn)CnXn.(21)

We use this definition of θim
n into Eq.(20) and perform a Taylor approxima-

tion on `′ to obtain

`′(Xᵀ
nθ

im
n ;Yn) = `′(Xᵀ

nθ
im
n−1;Yn) + ˜̀′′γnλn`

′(Xᵀ
nθ

im
n−1;Yn)Xᵀ

nCnXn,(22)

where ˜̀′′ = `′′(δXᵀ
nθim
n−1 + (1 − δ)Xᵀ

nθim
n ;Yn) ≡ `′′(Xᵀ

nθ̃;Yn), and δ ∈ [0, 1].
By combining Eq. (20) with Eq. (22) and cancelling out the first derivative
term we get

λn = 1 + ˜̀′′γnλnX
ᵀ
nCnXn

λn≥1 + ˜̀′′γnλnλc||Xn||2 [by Assumption 2.1(e) and `′′ < 0]

λn(1− γnλc ˜̀′′||Xn||2)≥1(
1 + γnλctrace(Î(θ̃))

)
λn≥1 [where Î is the observed Fisher information]

(1 + γnλcF )λn≥1 [by Assumption 2.1(d)].
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For the second part, since the log-likelihood is differentiable (Assumption
2.1(b)) we can rewrite the definition of implicit SGD in Eq. (4) (in the main
paper) as

θim
n = arg max{− 1

2γn
||θ − θim

n−1||2 + `(Xᵀ
nθ;Yn)}.

Therefore, setting θ = θim
n−1 in the above equation yields

− 1

2γn
||θim

n − θim
n−1||2 + `(Xᵀ

nθ
im
n ;Yn) ≥ `(Xᵀ

nθ
im
n−1;Yn)

||θim
n − θim

n−1||2 ≤ 2γn
(
`(Xᵀ

nθ
im
n ;Yn)− `(Xᵀ

nθ
im
n−1;Yn)

)
||θim

n − θim
n−1||2 ≤ 2γnL0||θim

n − θim
n−1|| [By Assumption 2.1(c)]

||θim
n − θim

n−1|| ≤ 2L0γn

||θim
n − θim

n−1||2 ≤ 4L2
0γ

2
n.

Finite-sample analysis.

Theorem 2.1. Let δn = E
(
||θim

n − θ?||2
)
. Suppose that Assumptions

2.1(a),(b),(c), (d), and (e) hold. Then, there exist constants n0 > 0 and
κ = 1 + 2γ1µλcλf for some µ ∈ (0, 1] such that,

δn ≤
4L2

0λc
2
γ1κ

µλfλc
n−γ + exp (− log κ · φγ(n)) [δ0 + κn0Γ2],

where Γ2 = 4L2
0λc

2∑
i γ

2
i < ∞, and φγ(n) = n1−γ if γ < 1, and φγ(n) =

log n if γ = 1.

Proof. Starting from the procedure defined by Eq. (4) in the main paper,
we have

θim
n − θ? =θim

n−1 − θ? + γnCn∇ log f(Yn;Xn, θ
im
n )

θim
n − θ? =θim

n−1 − θ? + γnλnCn∇ log f(Yn;Xn, θ
im
n−1) [By Theorem (3.1)]

||θim
n − θ?||2 =||θim

n−1 − θ?||2

+ 2γnλn(θim
n−1 − θ?)ᵀCn∇ log f(Yn;Xn, θ

im
n−1)

+ γ2
n||Cn∇ log f(Yn;Xn, θ

im
n )||2.(23)



PROPERTIES OF ESTIMATORS BASED ON STOCHASTIC GRADIENTS 7

The last term can be simply bounded since ∇ log f(Yn;Xn, θ
im
n ) = θim

n −θim
n−1

by definition; thus,

||Cn∇ log f(Yn;Xn, θ
im
n )||2 ≤ λc

2||θim
n − θim

n−1||2 ≤ 4L2
0λc

2
γ2
n,(24)

which holds almost surely by Lemma 2.3-Eq.(19). For the second term we
can bound its expectation as

E(2γnλn(θim
n−1 − θ?)ᵀCn∇ log f(Yn;Xn, θ

im
n−1))

≤ −
2γnλfλc

1 + γnλcF
||θim

n−1 − θ?||2 [by strong convexity, Assumption 2.1(d), Lemma 2.3]

(25)

Taking expectations in Eq. (23) and substituting Ineqs. (24) and (25) into
Eq. (23) yields the recursion,

E
(
||θim

n − θ?||2
)
≤ (1−

2γnλfλc

1 + γnλcF
)E
(
||θim

n−1 − θ?||2
)

+ 4L2
0λc

2
γ2
n.(26)

The following identity holds:

1− 1 + aγn
1 + bγn

≤ 1

1 + cγn
, c =

a

1 + I{b > a}(b− a)γ1
,

for all n > 0 and a, b > 0. It follows that c = µa for

µ =
1

1 + I{b > a}(b− a)γ1
∈ (0, 1].

We can use this identity to write:

(1−
2γnλfλc

1 + γnλcF
) ≤ 1

1 + 2γnµλfλc
,(27)

for all n > 0, where µ is defined by substitution as follows:

µ =
1

1 + I{λcF > 2λfλc}(λcF − 2λfλc)γ1

∈ (0, 1].

Therefore we can write recursion (26) as

E
(
||θim

n − θ?||2
)
≤ 1

1 + 2γnµλfλc
E
(
||θim

n−1 − θ?||2
)

+ 4L2
0λc

2
γ2
n.(28)

We can now apply Corollary 2.1 with an = 4L2
0λc

2
γ2
n and bn = 2γnµλfλc.



8

Note. Assuming Lipschitz continuity of the gradient ∇` instead of func-
tion ` would not critically alter the main result of Theorem (2.1). In fact,
assuming Lipschitz continuity with constant L of ∇` and boundedness of
E
(
||∇ log f(Yn;Xn, θ?)||2

)
≤ σ2, as it is typical in the literature, would sim-

ply add a term γ2
nL

2E
(
||θim

n − θ?||2
)
+γ2

nσ
2 in the right-hand side of Eq.(23).

In this case the upper-bound is always satisfied for n such that γ2
nL

2 > 1,
which also highlights a difference of implicit SGD with explicit SGD, as in
explicit SGD the term γ2

nL
2||θsgd

n−1−θ?||2 increases the upper bound and can

make ||θsgd
n − θ?||2 diverge. For, γ2

nL
2 < 1, the discount factor for implicit

SGD would be (1−γ2
nL

2)−1(1+2γnµλfλc)
−1, which could then be bounded

by a quantity (1+γnd)−1 for some constant d. This would lead to a solution
that is similar to Theorem (2.1).

Asymptotic analysis. Here, we prove the main result on the asymp-
totic variance of implicit SGD. First, we introduce linear maps LB {·} defined
as LB {X} = 1

2(BX +XB), where B is symmetric positive definite matrix
and X is bounded. The identity map is denoted as I and it holds I {X} = X,
for all X. Also, L0 is the null operator for which L0 {X} = 0, for all X. By
the Lyapunov theorem (Lyapunov, 1992) the map LB is one-to-one and thus
the inverse operator L−1

B {·} is well-defined. Furthermore, we define the norm
of a linear map as ||LB|| = max||X||=1 ||LB {X} ||. For bounded inputs X, it
holds ||LB|| = O(||B||).

Lemma 2.4. Suppose that the sequence {γn} satisfies Assumption 2.1(a).
Consider the matrix recursions

Xn = LI−γnBn {Xn−1}+ γn(C +Dn),(29)

Yn = L−1
I+γnBn

{Xn−1 + γn(C +Dn)} ,(30)

such that

(a) All matrices Xn, Yn, Bn, Dn and C are bounded,
(b) Bn → B is positive definite and ||Bn −Bn−1|| = O(γ2

n),
(c) C is a fixed matrix and Dn → 0.

Then, both recursions approximate the matrix L−1
B {C} i.e.,

(31) ||XnB +BXn − 2C|| → 0 and |YnB +BYn − 2C|| → 0.

If, in addition, B and C commute then Xn → B−1C and Yn → B−1C.
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Proof. We make the following definitions.

Γn = I − γnBn,(32)

Pni = LΓn ◦ LΓn−1 ◦ · · ·LΓi ,(33)

where the symbol ◦ denotes successive application of the linear maps, and
Pni = I if n < i, by definition. It follows,

||Pni || = O(
n∏
j=i

||I − γiBi||) ≤ K0e
−K1

∑n
j=i γj ,(34)

for suitable constants K0,K1 (see Polyak and Juditsky, 1992, Appendix,
Part 3). Let Γ(n) = K1

∑n
i=1 γi. By Assumption 2.1(a), Γ(n)→∞ and thus

Pni → L0 as n → ∞ and i is fixed. The matrix recursion in Lemma 2.4
can be rewritten as Xn = LΓn {Xn−1}+ γnC + γnDn. Solving the recursion
yields

Xn =LΓn ◦ LΓn−1 ◦ · · ·LΓ1 {X0}+ γnC + γnDn

+ an−1LΓn {C}+ an−1LΓn {Dn−1}
+ · · ·+
+ a1LΓn ◦ LΓn−1 ◦ · · ·LΓ2 {C}+ a1LΓn ◦ LΓn−1 ◦ · · ·LΓ2 {D1}

= Pn1 {X0}+ Sn{C}+ D̃n,(35)

where we have defined the linear map Sn =
∑n

i=1 γiP
n
i+1 and the matrix

D̃n =
∑n

i=1 γiP
n
i+1{Di}. Since Pn1 → L0, our goal is to prove that Sn → L−1

B

and D̃n → 0. By definition,

(36)
n∑
i=1

γiP
n
i+1 = L−1

Bn
+

n∑
i=2

Pni (L−1
Bi−1

− L−1
Bi

)− Pn1 L−1
B1
.

To see this, first note that γnI = (I − Γn)B−1
n for every n, and thus

γnI = LI−Γn ◦ L−1
Bn
.(37)

Therefore, if we collect the coefficients of the terms L−1
Bn

in the right-hand
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side of (36), we get

L−1
Bn

+
n∑
i=2

Pni (L−1
Bi−1

− L−1
Bi

)− Pn1 L−1
B1

= (Pn2 − Pn1 )L−1
B1

+ (Pn3 − Pn2 )L−1
B2

+ · · ·+ (Pnn+1 − Pnn )L−1
Bn

= Pn2 ◦ LI−Γ1 ◦ L−1
B1

+ Pn3 ◦ LI−Γ2 ◦ L−1
B2

+ · · ·+ Pnn+1 ◦ LI−Γn ◦ L−1
Bn

= Pn2 (γ1I) + Pn3 (γ2I) + · · ·+ Pnn+1(γnI) [by Eq. (37)]

=

n∑
i=1

γiP
n
i+1,

where we used the identity Pni+1 − Pni = Pni+1 ◦ (I − LΓi) = Pni+1 ◦ LI−Γi .
Furthermore, since Bi are bounded,

||L−1
Bi−1

− L−1
Bi
|| = |||L−1

Bi
◦ (LBi − LBi−1) ◦ L−1

Bi−1
|| = O(||LBi − LBi−1 ||)

= O(||Bi −Bi−1||) = O(γ2
i ). [By assumption of Lemma 2.4]

In addition, ||
∑n

i=2 P
n
i ◦ (L−1

Bi−1
− L−1

Bi
)|| ≤ K0e

−Γ(n)
∑n

i=2 e
Γ(i)O(γ2

i ). Since∑
i O(γ2

i ) <∞ and eΓ(i) is positive, increasing and diverging, we can invoke
Kronecker’s lemma and obtain

∑n
i=2 e

Γ(i)O(γ2
i ) = o(eΓ(n)). Therefore

n∑
i=2

Pni ◦ (L−1
Bi−1

− L−1
Bi

)→ L0,(38)

and since Pn1 → L0, we conclude from Equation (37) that

(39) lim
n→∞

n∑
i=1

γiP
n
i+1 = lim

n→∞
L−1
Bn

= L−1
B .

Thus, Sn → L−1
B , as desired. For D̃n we have

D̃n =

n∑
i=1

γiP
n
i+1{Di} =L−1

Bn
{Dn}+

n∑
i=2

Pni ◦ (L−1
Bi−1
{Di−1} − L−1

Bi
{Di})

+ Pn1 ◦ L−1
B1
{D1} .

Since ||Dn|| → 0 it follows that ||L−1
Bn
{Dn} || → 0 and ||(L−1

Bi−1
{Di−1} −

L−1
Bi
{Di})|| = O(γ2

i ). Recall that Pn1 → L0, and thus D̃n → 0. Finally, we

substitute this result in Equation (37) to get Xn → L−1
B {C}.
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For the second recursion of the lemma,

(40) Yn = L−1
I+γnBn

{Yn−1 + γn(C +Dn)} ,

the proof is similar. First, we make the following definitions.

Γn = I + γnBn,

Qni = L−1
Γn
◦ L−1

Γn−1
◦ · · ·L−1

Γi
.

As before, Qni → L0. Solving the recursion (40) yields

Yn = Qn1{Y0}+ Sn{C}+ D̃n,(41)

where we defined Sn =
∑n

i=1 γiQ
n
i and D̃n =

∑n
i=1 γiQ

n
i {Di}. The following

identities can also be verified by the definition of the linear maps.

L−1
Bn
◦ (I− L−1

Γn
) = γnL−1

Γn
,(42)

L−1
Bn

L−1
Γn

= L−1
Γn

L−1
Bn
.(43)

It holds,

L−1
Bn

+
n∑
i=1

Qni ◦ (L−1
Bi−1

− L−1
Bi

) =L−1
Bn
◦ (I− L−1

Γn
) + L−1

Γn
◦ L−1

Bn−1
◦ (I− L−1

Γn
) + · · ·

=γnL−1
Γn

+ γn−1L−1
Γn

L−1
Γn−1

+ · · · = Sn,

where the first line is obtained by Eq. (42) and the second line by Eq. (43).
Thus, similar to the previously analyzed recursion, Sn → L−1

B and D̃n → 0.
Therefore, Yn → L−1

B {C}.
For both cases, if B,C commute then L−1

B {C} = X such that BX +
XB = 2C. Setting X = B−1C is a solution since BB−1C + B−1CB =
C +B−1BC = 2C. By the Lyapunov theorem, this solution is unique.

Corollary 2.2. Consider the matrix recursions

Xn = LI−γnBn {Xn−1}+ γ2
n(C +Dn),(44)

Yn = L−1
I+γnBn

{
Yn−1 + γ2

n(C +Dn)
}
,(45)

where Bn, B,C,Dn satisfy the assumptions of Lemma 2.4. Moreover, sup-
pose γn = γ1n

−1. If the matrix B − I/γ1 is positive definite, then

(1/γn)Xn → L−1
B−I/γ1 {C} and (1/γn)Yn → L−1

B−I/γ1 {C} i.e.,

both matrices (1/γn)Xn and (1/γn)Yn approximate the matrix L−1
B−I/γ1 {C}.

If, in addition, B and C commute then (1/γn)Xn → (B − I/γ1)−1C and
(1/γn)Yn → (B − I/γ1)−1C.
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Proof. Both Xn, Yn → 0 by direct application of Lemma (2.4). Let
X̃n = (1/γn)Xn. First, divide (44) by γn to obtain

X̃n = LI−γnBn
{
X̃n−1

} γn−1

γn
+ γn(C +Dn).(46)

By Assumption 2.1(a), γn−1/γn = 1 + γn/γ1 + O(γ2
n). Then,

LI−γnBn
{
X̃n−1

} γn−1

γn
= LI−γnBn

{
X̃n−1

}
+ γnX̃n−1 + O(γ2

n).(47)

Therefore, we can rewrite Eq. (46) as

X̃n = LI−γnΓn

{
X̃n−1

}
+ γn(C +Dn),(48)

where Γn = Bn − I/γ1 + O(γn). In the limit Γn → B − I/γ1 > 0. Fur-
thermore, ||Γi−1 − Γi|| = O(γ2

i ) by assumptions of Corollary 2.2. Thus, we
can apply Lemma 2.4 to conclude that X̃n = (1/γn)Xn → L−1

B−I/γ1{C}.
The proof for Yn follows the same reasoning since (I + γnBn)−1(γn−1/γn) =
(I + γnΓn)−1, where Γn = Bn − I/γ1 + O(γn).

Theorem 2.2. Consider the SGD procedures defined by Eq. (1) and by
Eq. (4) in the main paper, and suppose that Assumptions 2.1(a),(c),(d),(e)
hold, where γ = 1, and that 2γ1CI(θ?) � I. The asymptotic variance of the
explicit SGD estimator satisfies

nVar
(
θsgd
n

)
→ γ2

1 (2γ1CI(θ?)− I)−1CI(θ?)C.

The asymptotic variance of the implicit SGD estimator satisfies

nVar
(
θim
n

)
→ γ2

1 (2γ1CI(θ?)− I)−1CI(θ?)C.

Proof. We begin with the implicit SGD procedure. For notational conve-
nience we make the following definitions: Vn = Var

(
θim
n

)
, Sn(θ) = ∇ log f(Yn;Xn, θ).

Denote E (Sn(θ)) = h(θ). Let Jh denote the Jacobian of function h, then, un-
der typical regularity conditions of Assumptions 2.1(d) and by Theorem 2.1:

E (Sn(θ?) | Xn) = 0

Var (Sn(θ?)) = E (Var (Sn(θ?) | Xn)) = I(θ?)

Jh(θ) = −I(θ), [under regularity conditions]

h(θim
n ) = −I(θ?)(θ

im
n − θ?) + O(γn) [by Theorem 2.1],

||Var (Sn(θ)− Sn(θ?)) || ≤ E
(
||Sn(θ)− Sn(θ?)||2

)
≤ L2

0E
(
||θ − θ?||2

)
.(49)



PROPERTIES OF ESTIMATORS BASED ON STOCHASTIC GRADIENTS 13

We can now rewrite the definition of implicit SGD as follows,

θim
n = θim

n−1 + γnCnSn(θim
n ) = θim

n−1 + γnλnCnSn(θim
n−1),(50)

where λn is defined in Theorem 3.1 and λn = 1−O(γn) by Eq. (18). Then,
taking variances on both sides of Eq. (50) yields

Vn = Vn−1 + γ2
nCnVar

(
Sn(θim

n

)
Cᵀ
n + γnCov

(
θim
n−1, Sn(θim

n

)
Cᵀ
n + γnCnCov

(
Sn(θim

n ), θim
n−1

)
.

(51)

We can simplify all variance/covariance terms in Eq. (51) as follows.

CnVar
(
Sn(θim

n )
)
Cᵀ
n = CnVar

(
Sn(θ?) + [Sn(θim

n )− Sn(θ?)]
)
Cᵀ
n

= CI(θ?)C
ᵀ + o(1), [by Eqs. (49), Theorem (2.1), and Assumption 2.1(e)]

Cov
(
θim
n−1, Sn(θim

n )
)

= Cov
(
θim
n−1, Sn(θim

n−1)
)

+ Cov
(
θim
n−1, (λn − 1)Sn(θim

n−1)
)

= Cov
(
θim
n−1, h(θim

n−1)
)

+ O(γn)

= Vn−1I(θ?) + O(γn). [by Eq. (49), Theorem (2.1), Eq. (18)].

Similarly, Cov
(
h(θim

n ), θim
n−1

)
= Vn−1I(θ?) + O(γn). We can now rewrite

Eq. (51) as

Vn = LI−γnBn {Vn−1}+ γ2
n[CI(θ?)C

ᵀ + o(1)],(52)

where Bn = 2CnI(θ?) and Bn → 2CI(θ?). Corollary 2.2 on recursion (52)
yields the following closed-form, sinceB and C commute and C is symmetric:

(1/n)Vn → γ2
1 (2γ1CI(θ?)− I)−1CI(θ?)C.

The regularity conditions (49) and the convergence rates of Theorem 2.1
that are crucial for this proof also hold for the explicit procedure.

Theorem 2.3. Consider the SGD procedure defined in Eq. (1) in the
main paper, and suppose Assumptions 2.1(a),(c),(d), and (e) hold, where
γ ∈ [0.5, 1). Then, the iterate θim

n converges to θ? in probability and is asymp-
totically efficient, i.e.,

nVar
(
θim
n

)
→ I(θ?)

−1.

Proof. By Theorem 2.1 and Assumptions 2.1 (c), (d), we have

∇ log f(Yn;Xn, θ
im
n ) = ∇ log f(Yn;Xn, θ?)− I(θ?)(θ

im
n − θ?) + O(γn).(53)
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Define, for convenience εn = ∇ log f(Yn;Xn, θ?), F = I(θ?). Then, the first-
order implicit SGD iteration becomes

θim
n − θ? = (I + γnF )−1(θim

n−1 − θ? + γnεn + O(γ2
n)).(54)

We make the following definitions.

ei = γi(I + γiF )−1(εi + O(γ2
i )),

Bj
i =

i∏
k=j

(I + γkF )−1,

Dn
j =

i∏
k=n−1

Bk
j+1 = I +Bj+1

j+1 +Bj+2
j+1 + . . .+Bn−1

j+1 .(55)

Then, we can solve the recursion for θim
n − θ? to obtain

θim
n − θ? = (1/n)Dn

0 (θim
n − θ?) + (1/n)

n−1∑
i

Dn
i ei.(56)

Our proof is now split into proving the following two lemmas.

Lemma 2.5. Under Assumption 2.1(a) Dn
0 = o(n).

Proof. Matrix F is positive definite by Assumption 2.1(d). Thus, if λ is
some eigenvalue of F then the corresponding eigenvalue of Dn

0 is 1+ 1
1+γ1λ

+
1

1+γ1λ
1

1+γ2λ
+ · · · ≤

∑n
i=0 exp(−Kλ

∑i
k=1 γk), where the last inequality is

obtained by Lemma 2.1. Because
∑
γi → ∞, the summands are o(1), and

thus Dn
0 is o(n).

Lemma 2.6. Suppose Assumption 2.1(a) and Eq. (53) hold. Then,

γiD
n
i (I + γiF )−1 = Ωn

i + F−1,(57)

such that
∑n−1

i=0 Ωn
i = o(n).

Proof. Our goal will be to compare the eigenvalues of γiD
n
i and F .

Any matrix Dn
i shares the same eigenvectors with F because F is positive

definite, and thus a relationship on eigenvalues will automatically establish
a relationship on the matrices. For convenience, define qji =

∏j
k=i(1+γkλ)−1

for λ > 0; by convention, qii−1 = 1. Also let sji =
∑j

k=i γk be the function

of partial sums. By Lemma 2.1 qji = O(exp(−Kλsji )), for some K > 0. For
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an eigenvalue λ > 0 of F the corresponding eigenvalue, say λ′, of matrix
γiD

n
i (I + γiF )−1 is equal to

λ′ =
γi

1 + γiλ
(qii+1 + qi+1

i+1 + . . .+ qn−1
i+1 ).(58)

Thus,

λ′(1 + γiλ) =
n−1∑
k=i

γiq
k
i+1.(59)

Our goal will be to derive the relationship between λ and λ′. By definition

γi+1λq
i+1
i+1 + qi+1

i+1 = 1

γi+2λq
i+2
i+1 + qi+2

i+1 = qi+1
i+1

. . . . . .

γn−2λq
n−2
i+1 + qn−2

i+1 = qn−3
i+1

γn−1λq
n−1
i+1 + qn−1

i+1 = qn−2
i+1 .(60)

By summing over the terms we obtain:

λ

n−1∑
k=i+1

γkq
k
i+1 + qn−1

i+1 = 1.(61)

If we combine with (58) we obtain

λ
n−1∑
k=i

γiq
k
i+1 + λ

n−1∑
k=i

(γk − γi)qki+1 + qn−1
i+1 = 1 + γiλ or(62)

(1 + γiλ)λλ′ + λ

n−1∑
k=i

(γk − γi)qki+1 + qn−1
i+1 = 1 + γiλ.(63)

We now focus on the second term. By telescoping the series we obtain

λ

n−1∑
k=i

(γk − γi)qki+1 = λ

n−1∑
k=i

 k∑
j=i

(γj+1 − γj)

 qki+1 = λ

n−1∑
k=i

 k∑
j=i

γjo(γj)

 qki+1

≤ λo(γi)
n−1∑
k=i

ski q
k
i+1 , qni .(64)
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In Eq. (64) we used (γj+1 − γj)/γj = O(n−1−γ)/n−γ = O(n−1) = o(γj),
by Assumption 2.1(a). Our goal is now to show

∑n−1
i=0 q

n
i = o(n). Since

qki+1 = O(exp(−Kλski+1)) by (Polyak and Juditsky, 1992, p845, see A6 and
A7) we obtain that qni → 0 for fixed i as n→∞. Therefore we can rewrite
Eq. (62) as

λ′λ+ qni + O(qni+1) = 1,(65)

where
∑n

i=0 q
n
i+1 = o(n) and

∑n−1
i=0 q

n
i = o(n).

Our proof is now complete. By Eq. (56) and Lemmas 2.5 and 2.6 we have

θim
n − θ? = F−1

n∑
i=1

εi + (1/n)o(n).

Because Var (εi) = I(θ?), we finally obtain

nVar
(
θim
n − θ?

)
= I(θ?)

−1.

Theorem 2.4. Suppose that Assumptions 2.1(a),(c),(d),(e),(f) hold. Then,
the iterate θim

n of implicit SGD, defined by Eq. (4) in the main paper, is
asymptotically normal, such that

nγ/2(θim
n − θ?)→ Np(0,Σ),

where Σ = γ2
1 (2γ1CI(θ?)− I)−1CI(θ?)C.

Proof. Let Sn(θ) = ∇ log f(Yn;Xn, θ) as in the proof of Theorem (2.2).
The conditions for Fabian’s theorem—see Fabian (1968, Theorem 1)—hold
also for the implicit procedure. The goal is to show that

θim
n − θ? = (I − γnAn)(θim

n−1 − θ?) + γnξn(θ?) + O(γ2
n),(66)

where An → A � 0, and ξn(θ) = Sn(θ) − h(θ), and h(θ) = E (Sn(θ)); note,
ξn(θ?) = Sn(θ?). Indeed, by a Taylor expansion on Sn(θim

n ) and considering
that θim

n = θim
n−1 + γnSn(θim

n ), by definition, we have

(I + γnÎn(θ?))(θ
im
n − θ?) = θim

n−1 − θ? + γnSn(θ?),(67)
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where În(θ?) = −∇2Sn(θ?); note, E
(
În(θ?)

)
= I(θ?). Because (I+γnÎn(θ?))

−1 =

I − γnÎn(θ?) + O(γ2
n), we can rewrite Eq. (67) as

θim
n − θ? = (I − γnÎn(θ?))(θ

im
n−1 − θ?) + γnSn(θ?) + O(γ2

n).(68)

We can now apply Fabian’s Theorem to derive asymptotic normality of θim
n .

The variance matrix of the asymptotic normal distribution is derived in
Theorem 2.4 under weaker conditions.

Stability. Here, we prove Lemma (2.1) in the main paper.

Lemma 2.1. Let λf = max eig(I(θ?)), and suppose γn = γ1/n and
γ1λf > 1. Then, the maximum eigenvalue of Pn1 satisfies

max
n>0

max eig(Pn1 ) = Θ(2γ1λf /
√
γ1λf ).

For the implicit method,

max
n>0

max eig(Qn1 ) = O(1).

Proof. We will use the following intermediate result:

max
n>0
|
n∏
i=1

(1− b/i)| ≈

{
1− b if 0 < b < 1

2b√
2πb

if b > 1

The first case is obvious. For the second case, b > 1, assume without loss of
generality that b is an even integer. Then the maximum is given by

(b− 1)(b/2− 1)(b/3− 1) · · · (2− 1) =
1

2

(
b

b/2

)
= Θ(2b/

√
2πb),(69)

where the last approximation follows from Stirling’s formula. The stability
result on the explicit SGD updates of Lemma 2.1 follows immediately by
using the largest eigenvalue λf of I(θ?). For the implicit SGD updates, we
note that the eigenvalues of (I+γnI(θ?))

−1 are less than one, for any γn > 0
and any Fisher matrix.

Applications.

Theorem 3.1. Suppose Assumption 2.1(b) holds, then the gradient of
the log-likelihood is a scaled version of covariate X, i.e., for every θ ∈ Rp
there is a scalar λ ∈ R such that

∇ log f(Y ;X, θ) = λX.
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Thus, the gradient in the implicit update in Eq. (4) (in the main paper) is
a scaled version of the gradient calculated at the previous iterate, i.e.,

∇ log f(Yn;Xn, θ
im
n ) = λn∇ log f(Yn;Xn, θ

im
n−1),(70)

where the scalar λn satisfies

λn`
′(Xᵀ

nθ
im
n−1;Yn) = `′

(
Xᵀ
nθ

im
n−1 + γnλn`

′(Xᵀ
nθ

im
n−1;Yn)Xᵀ

nCnXn;Yn
)
.(71)

Proof. From the chain rule ∇ log f(Yn;Xn, θ) = `′(Xᵀ
nθ;Yn)Xn, and

thus ∇ log f(Yn;Xn, θ
im
n ) = `′(Xᵀ

nθim
n ;Yn)Xn and ∇ log f(Yn;Xn, θ

im
n−1) =

`′(Xᵀ
nθim
n−1;Yn)Xn, and thus the two gradients are colinear. Therefore there

exists a scalar λn such that

∇ log f(Yn;Xn, θ
im
n ) = λn∇ log f(Yn;Xn, θ

im
n−1) or

`′(Xᵀ
nθ

im
n ;Yn)Xn = λn`

′(Xᵀ
nθ

im
n−1;Yn)Xn.(72)

We also have,

θim
n = θim

n−1 + γnCn log f(Yn;Xn, θ
im
n ) [by definition of implicit SGD in Eq. (4)]

= θim
n−1 + γnλnCn log f(Yn;Xn, θ

im
n−1). [by Eq. (72)]

(73)

Substituting the expression for θim
n in Eq.(73) into Eq. (72) we obtain the

desired result of the Theorem in Eq. (70).
We now prove the last claim of the theorem regarding the search bounds

for λn. For notational convenience, define a = Xᵀ
nθim
n−1, g(x) = `′(x;Yn),

and c = Xᵀ
nCnXn, where c > 0 because Cn are positive definite. Also let

x? = γnλng(a), then the fixed-point equation (71) can be written as

x? = γng(a+ x?c).(74)

where g is decreasing by Assumption (b). If g(a) = 0 then x? = 0. If g(a) > 0
then x? > 0 and γng(a + xc) < γng(a) for all x > 0, since g(a + xc) is
decreasing; taking x = x? yields γng(a) > γng(a + x?c) = x?, by the fixed-
point equation (74). Thus, 0 < x? < γng(a). Similarly, if g(a) < 0 then
x? < 0 and γng(a+ xc) > γng(a) for all x < 0, since g(a+ xc) is decreasing;
taking x = x? yields γng(a) < γng(a+x?c) = x?, by the fixed-point equation.
Thus, γng(a) < x? < 0. In both cases 0 < λn < 1. A visual proof is given
Figure 1.

3. Additional experiments.
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Fig 1. (Search bounds for solution of Eq. (74)) Case g(a) > 0: Corresponds to Curve (a)
defined as γng(a+ xc), c > 0. The solution x? of fixed point equation (74) (corresponding
to right triangle) is between 0 and γng(a) since Curve (a) is decreasing. Case g(a) < 0:
Corresponds to Curve (b) also defined as γng(a + xc). The solution x? of fixed point
equation (74) (left triangle) is between γng(a) and 0 since Curve (b) is also decreasing.

Normality experiments with implicit SGD. In Figure 2 we plot the ex-
perimental results of Section 4.1.2 for p = 50 (parameter dimension). We
see that explicit SGD becomes even more unstable in more dimensions as
expected. In contrast, implicit SGD remains stable and validates the theo-
retical normal distribution for small learning rates. In larger learning rates
we observe a divergence from the asymptotic chi-squared distribution (e.g.,
γ1 = 6) because when the learning rate parameter is large there is more noise
in the stochastic approximations, and thus more iterations are required for
convergence. In this experiment we fixed the number of iterations for each
value of the learning rate, but subsequent experiments verified that implicit
SGD reaches the theoretical chi-squared distribution if the number of itera-
tions is increased. Finally, in Figure 3 we make a similar plot for a logistic
regression model. In this case the learning rates need to be larger because
with the same distribution of covariates for Xn, the Fisher information is
smaller than in the linear normal model. In summary, in almost all exper-
iments explicit SGD was unstable and could not converge whereas implicit
SGD was stable and followed the theoretical chi-squared distribution.
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Fig 2. Simulation with normal model for p = 50 parameters. Implicit SGD is stable
and follows the nominal chi-squared distribution well, regardless of the particular learn-
ing rate. Explicit SGD becomes unstable at larger γ1 and its distribution does not follow
the theoretical distribution chi-squared distribution well. In particular, the distribution of
N(θsgdN − θ?)

ᵀΣ−1(θsgdN − θ?) quickly becomes unstable for larger values of the learning rate
parameter, and eventually diverges when γ1 > 3.

Poisson regression. Here, we illustrate our method on a bivariate Poisson
model which is simple enough to derive the variance formula analytically.
This example was first presented by Toulis et al. (2014). We assume binary
features such that, for any iteration n, Xn is either (0, 0)ᵀ, (1, 0)ᵀ or (0, 1)ᵀ

with probabilities 0.6, 0.2 and 0.2 respectively. We set θ? = (θ1, θ2)ᵀ for some
θ1, θ2, and assume Yn ∼ Poisson(exp(Xᵀ

nθ?)), where the transfer function h
is the exponential, i.e., h(x) = exp(x). It follows,

I(θ?) = E
(
h′(Xᵀ

nθ?)XnX
ᵀ
n

)
= 0.2

(
eθ1 0
0 eθ2

)
.

We set γn = 10/3n and Cn = I. Setting θ1 = log 2 and θ2 = log 4, the
asymptotic variance Σ in Theorem (2.2) is equal to

Σ =
2

3

(
eθ1

(4/3)eθ1−1
0

0 eθ2

(4/3)eθ2−1

)
=

(
0.8 0
0 0.62

)
.(75)
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explicit implicit
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Fig 3. Simulation with logistic regression model for p = 5. Learning rates are larger than
in the linear normal model to ensure the asymptotic covariance matrix of Theorem (2.2)
is positive definite. Implicit SGD is stable and follows the nominal chi-squared distribution
regardless of the learning rate. Explicit SGD is unstable at virtually all replications of this
experiment.

Next, we obtain 100 independent samples of θsgd
n and θim

n for n = 20000 iter-
ations of procedures in Eq. (4) and in Eq. (4), and compute their empirical
variances. We observe that the implicit estimates are particularly stable and
have an empirical variance satisfying

(1/γn)V̂ar(θim
n ) =

(
0.86 −0.06
−0.06 0.64

)
,

and that is close to the theoretical value in Eq. (75). In contrast, the stan-
dard SGD estimates are unstable and their L2 distance to the true values θ?
are orders of magnitude larger than the implicit ones (see Table 1 for sample
quantiles). By Lemma 2.1 in the main paper, such deviations are expected
for standard SGD because the largest eigenvalue of I(θ?) is λ(2) = 0.8 sat-
isfying γ1λ(2) = 8/3 > 1. Note that it is fairly straightforward to stabilize
the standard SGD procedure in this problem, for example by modifying the
learning rate sequence to γn = min{0.15, 10/3n}. In general, when the opti-
mization problem is well-understood, it is easy to determine the learning rate
schedule that avoids out-of-bound explicit updates. In practice, however, we
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Table 1
Quantiles of ||θsgdn − θ?|| and ||θimn − θ?||. Values larger than 1e3 are marked “*”.

quantiles

method 25% 50% 75% 85% 95% 100%

SGD 0.01 1.3 435.8 * * *

Implicit 0.00 0.01 0.02 0.02 0.03 0.04

are working with problems that are not so well-understood and determin-
ing the correct learning rate parameters may take substantial effort. The
implicit method eliminates this overhead.

Experiments with glmnet. In this section, we transform the outcomes
in the original experiment Y through the logistic transformation and then
fit a logistic regression model. The results are shown in Table 2, which
replicates and expands on Table 2 of Friedman et al. (2010). The implicit
SGD method maintains a stable running time over different correlations and
scales sub-linearly in the model size p. In contrast, glmnet is affected by the
model size p and covariate correlation, and remains 2x-10x slower across
experiments. We note that the implicit SGD method is slower in the logistic
regression example compared to the normal case (Table 3 in main paper).
This is because the implicit equation of Algorithm 1 (in the main paper)
needs to be solved numerically, whereas a closed-form solution is available
in the normal case.

Experiments with machine learning algorithms. In this section we per-
form additional experiments with related methods from the machine learning
literature. We focus on averaged implicit SGD defined in Eq. (14) of the main
paper, which was shown to be optimal under suitable conditions, because
most machine learning methods are also designed to achieve optimality in
the context of maximum-likelihood (or maximum a-posteriori) computation
with a finite data set. In summary, our experiments include the following
procedures:

• Explicit SGD procedure in Eq. (1) of the main paper.
• Implicit SGD procedure in Eq. (4) of the main paper.
• Averaged explicit SGD: Averaged stochastic gradient descent with ex-

plicit updates of the iterates (Xu, 2011; Shamir and Zhang, 2012; Bach
and Moulines, 2013). This is equivalent to the procedure in Eq.(14) of
the main paper, where the implicit update is replaced by an explicit
one, θsgd

n = θsgd
n−1 + γn∇ log f(Yn;Xn, θ

sgd
n−1).
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Table 2
Experiments comparing implicit SGD with glmnet. Covariates X are sampled as normal,

with cross-correlation ρ, and the outcomes are sampled as y ∼ Binom(p),
logit(p) = N (Xθ?, σ

2I). Running times (in secs) are reported for different values of ρ
averaged over 10 repetitions.

method metric correlation (ρ)
0 0.2 0.6 0.9

N = 1000, p = 10

glmnet
time(secs) 0.02 0.02 0.026 0.051

mse 0.256 0.257 0.292 0.358

sgd
time(secs) 0.058 0.058 0.059 0.062

mse 0.214 0.215 0.237 0.27

N = 5000, p = 50

glmnet
0.182 0.193 0.279 0.579
0.131 0.139 0.152 0.196

sgd
0.289 0.289 0.296 0.31
0.109 0.108 0.116 0.14

N = 100000, p = 200

glmnet
8.129 8.524 9.921 22.042
0.06 0.061 0.07 0.099

sgd
5.455 5.458 5.437 5.481
0.045 0.046 0.048 0.058

• Prox-SVRG: A proximal version of the stochastic gradient descent
with progressive variance reduction (SVRG) method (Xiao and Zhang,
2014).
• Prox-SAG: A proximal version of the stochastic average gradient (SAG)

method (Schmidt et al., 2013). While its theory has not been formally
established, Prox-SAG has shown similar convergence properties to
Prox-SVRG.1

• Adagrad (Duchi et al., 2011) as defined in Eq. (12). We note that
AdaGrad and similar adaptive methods effectively approximate the
natural gradient by using a larger-dimensional learning rate. It has
the added advantage of being less sensitive than first-order methods

1We note that the linear convergence rates for Prox-SVRG and Prox-SAG refer to
convergence to the empirical minimizer (e.g., MLE), and not to ground truth θ?.
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Table 3
Summary of data sets and the L2 regularization parameter λ used

description type features training set test set λ
covtype forest cover type sparse 54 464,809 116,203 10−6

delta synthetic data dense 500 450,000 50,000 10−2

rcv1 text data sparse 47,152 781,265 23,149 10−5

mnist digit image features dense 784 60,000 10,000 10−3

to tuning of hyperparameters.

We test the performance of averaged implicit SGD on standard bench-
marks of large-scale linear classification with real data sets against the afore-
mentioned methods. Some of these test comparisons were recently published
by Toulis et al. (2016). Our datasets are summarized in Table 3. The COV-
TYPE data (Blackard, 1998) consists of forest cover types in which the task
is to classify class 2 among 7 forest cover types. DELTA is synthetic data
offered in the PASCAL Large Scale Challenge (Sonnenburg et al., 2008)
and we apply the default processing offered by the challenge organizers. The
task in RCV1 is to classify documents belonging to class CCAT in the text
dataset (Lewis et al., 2004), where we apply the standard preprocessing
provided by Bottou (2012). In the MNIST data set (Le Cun et al., 1998) of
images of handwritten digits, the task is to classify digit 9 against all others.

For averaged implicit SGD and averaged explicit SGD, we use the learning
rate γn = η0(1 + λη0n)−3/4 prescribed in Xu (2011), where the constant η0

is determined using a small subset of the data. Hyperparameters for other
methods are set based on a computationally intensive grid search over the
entire hyperparameter space: for Prox-SVRG, this includes the step size η
in the proximal update and the inner iteration count m, and for Prox-SAG,
the same step size η.

The results are shown in Figure 4. We see that averaged implicit SGD
achieves comparable performance with the tuned proximal methods Prox-
SVRG and Prox-SAG, as well as AdaGrad. All methods have a comparable
convergence rate and take roughly a single pass in order to converge. Ada-
Grad exhibits a larger variance in its estimate than the proximal methods,
which can be explained from our theoretical results in Section 2.2.1. We also
note that as averaged implicit SGD achieves comparable results to the other
proximal methods, it also requires no tuning while Prox-SVRG and Prox-
SAG do require careful tuning of their hyparameters. This was confirmed
from separate sensitivity analyses (not reported in this paper), which indi-
cated that aisgd is robust to fine-tuning of hyperparameters in the learning
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Fig 4. Large scale linear classification with log loss on four data sets. Each plot indicates
the test error of various stochastic gradient methods over a single pass of the data.

rate, whereas small perturbations of hyperparameters in averaged explicit
SGD (the learning rate), Prox-SVRG (proximal step size η and iteration m),
and Prox-SAG (proximal step size η), can lead to arbitrarily bad error rates.

Averaged explicit SGD. In this experiment we validate the theory of
statistical efficiency and stability of averaged implicit SGD. To do so, we
follow a simple normal linear regression example from Bach and Moulines
(2013). We set N = 1e6 as the number of observations, and p = 20 be
the number of covariates. We also set θ? = (0, 0, . . . , 0)ᵀ ∈ R20 as the
true parameter value. The random variables Xn are distributed i.i.d. as
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Fig 5. Loss of averaged implicit SGD, averaged explicit SGD, and plain implicit SGD in
Eq. (4) (Cn = I), on simulated multivariate normal data with N = 1e6 observations p = 20
features. The plot shows that averaged implicit SGD is stable regardless of the specification
of the learning rate γ and without sacrificing performance. In contrast, explicit averaged
SGD is very sensitive to misspecification of the learning rate.

Xn ∼ Np(0, H), where H is a randomly generated symmetric matrix with
eigenvalues 1/k, for k = 1, . . . , p. The outcome Yn is sampled from a nor-
mal distribution as Yn | Xn ∼ N (Xᵀ

nθ∗, 1), for n = 1, . . . , N . We choose a
constant learning rate γn ≡ γ according to the average radius of the data
R2 = trace(H), and for both averaged explicit and implicit SGD we collect
iterates θn for n = 1, . . . , N , and keep the average θ̄n. In Figure 5, we plot
(θn − θ?)ᵀH(θn − θ?) for each iteration for a maximum of N iterations, i.e.,
a full pass over the data, in log-log space.

Figure 5 shows that averaged implicit SGD performs on par with aver-
aged explicit SGD for the rates at which averaged explicit SGD is known
to be optimal. Thus, averaged implicit SGD is also optimal. However, the
benefit of the implicit procedure in averaged implicit SGD becomes clear as
the learning rate deviates; notably, averaged implicit SGD remains stable
for learning rates that are above the theoretical threshold, i.e., γ > 1/R2,
whereas averaged explicit SGD diverges in the case of γ = 2/R2. This stable
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behavior is also exhibited in implicit SGD, but it converges at a slower rate
than averaged implicit SGD, and thus cannot effectively combine stability
with statistical efficiency. We note that stability of averaged implicit SGD
is also observed in the same experiments using decaying learning rates.
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