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Stochastic gradient descent procedures have gained popularity
for parameter estimation from large data sets. However, their statis-
tical properties are not well understood, in theory. And in practice,
avoiding numerical instability requires careful tuning of key param-
eters. Here, we introduce implicit stochastic gradient descent proce-
dures, which involve parameter updates that are implicitly defined.
Intuitively, implicit updates shrink standard stochastic gradient de-
scent updates. The amount of shrinkage depends on the observed
Fisher information matrix, which does not need to be explicitly com-
puted; thus, implicit procedures increase stability without increas-
ing the computational burden. Our theoretical analysis provides the
first full characterization of the asymptotic behavior of both stan-
dard and implicit stochastic gradient descent-based estimators, in-
cluding finite-sample error bounds. Importantly, analytical expres-
sions for the variances of these stochastic gradient-based estimators
reveal their exact loss of efficiency. We also develop new algorithms
to compute implicit stochastic gradient descent-based estimators for
generalized linear models, Cox proportional hazards, M-estimators,
in practice, and perform extensive experiments. Our results suggest
that implicit stochastic gradient descent procedures are poised to be-
come a workhorse for approximate inference from large data sets.

1. Introduction. Parameter estimation by optimization of an objec-
tive function is a fundamental idea in statistics and machine learning (Fisher,
1922; Lehmann and Casella, 1998; Hastie et al., 2011). However, classi-
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cal procedures, such as Fisher scoring, the EM algorithm or iteratively
reweighted least squares (Fisher, 1925; Dempster et al., 1977; Green, 1984),
do not scale to modern data sets with millions of data points and hundreds
or thousands of parameters (National Research Council, 2013).

In particular, suppose we want to estimate the true parameter 6, € RP
of a distribution f from N i.i.d. data points (X;,Y;), such that condi-
tional on covariate X; € RP outcome Y; € R? is distributed according to
f(Yi; X5, 0,). Such estimation problems often reduce to optimization prob-
lems. For instance, the maximum likelihood estimator (MLE) is obtained by
solving %l¢ = arg maxy Zfi 1 log f(Yi; X, 0). Classical optimization proce-
dures, such as Newton-Raphson or Fisher scoring, have a runtime complexity
that ranges between O(Np'*€) and O(Np?*€), in the best case and worst
case respectively (Lange, 2010). Quasi-Newton (QN) procedures are the only
viable alternative in practice because they have O(Np?) complexity per it-
eration, or O(Np*€) in certain favorable cases (Hennig and Kiefel, 2013).
However, estimation from large data sets requires an even better runtime
complexity that is roughly O(Np'~¢), i.e., linear in data size N but sublinear
in parameter dimension p. The first requirement on N is generally unavoid-
able because all data points carry information from the i.i.d. assumption.
Sublinearity in p is therefore critical.

Such requirements have recently generated interest in stochastic opti-
mization procedures, especially those only relying on first-order information,
i.e., gradients. Perhaps the most widely popular procedure in this family is
stochastic gradient descent (SGD), defined for n =1,2,..., as

(1) szgd = efzgdl + PYnCnv IOg f(YTl7 Xn, asgd )7

— n—1
where v, > 0 is the learning rate sequence, typically defined as v, = y1n~7,
v1 > 0 is the learning rate parameter, v € (.5, 1], and C), are p X p positive-
definite matrices, also known as condition matrices.

Stochastic optimization procedures of this kind are special cases of stochas-
tic approximation (Robbins and Monro, 1951), where the estimation prob-
lem is not formulated as an optimization problem but more generally as a
characteristic equation. Early research considered a streaming data setting—
akin to a superpopulation setting—where the characteristic equation is

(2) E (Vg f(Y; X,0,) | X) =0,

with the expectation being over the true conditional distribution of outcome
Y given covariate X. More recent research, largely in computer science and
optimization, considers a finite N setting with characteristic equation

(3) E (v log f(Y: X, 9%8)) -0,
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where the expectation is over the empirical distribution of (X,Y’) in the
finite data set.! In both settings, SGD of Eq. (1) is well-defined: in the finite
population setting of Eq. (3) the data point (X,,Y,) is a random sample
with replacement from the finite data set; in the infinite population setting
of Eq. (2) the data point (X, Y,,) is simply the nth data point in the stream.

From a computational perspective, SGD in Eq. (1) is appealing because
it avoids expensive matrix inversions, as in Newton-Raphson, and the log-
likelihood is evaluated at a single data point (X,,Y;,) and not on the entire
data set. From a theoretical perspective, SGD in Eq. (1) converges, under
suitable conditions, to 038% where E (log fv; X, GZ%d) | X > = 0 (Benveniste
et al., 1990; Ljung et al., 1992; Borkar, 2008). This condition can satisfy
both Eq. (2) and Eq. (3), implying that SGD can be used on both finite
and infinite population settings. For the rest of this paper we assume an
infinite population setting, as it is the most natural setting for stochastic
approximations. The main difference between the streaming data setting
studied in the computer science and optimization literature and the infi-
nite population setting we consider here is that we do not condition on the
observed ordering of data points, but we condition on a random ordering
instead. Moreover, most of the theoretical results presented in this paper
for the infinite population case can be applied to the finite population case,
where instead of estimating 0, we estimate the MLE, or the MAP estimate
if there is regularization.

In this paper, we introduce implicit stochastic gradient descent procedures—
implicit SGD for short—defined as
(4) 9:1m = 0;11111 + VHCnV log f(Ym Xn, G;Lm)y
where 7, C,, are defined as in standard SGD in Eq. (1). Furthermore, we
provide a theoretical analysis of estimators based on stochastic gradients, for
both implicit and standard procedures. To distinguish the two procedures,
we will refer to standard SGD in Eq. (1) as SGD with explicit updates, or
explicit SGD for short, because the next iterate Higd can be immediately
computed given Gflgji , and the data point (X,,,Y,,). In contrast, the update
in Eq. (4) is mplicit because the next iterate §I™ appears on both sides of
the equation, where the iterate was typed in boldface to emphasize the fact.

1.1. Hllustrative example. Here, we motivate the main results of this pa-
per on the comparison between implicit and explicit SGD. Let 6, € R

f regularization is used, then Eq. (3) could approximate the maximum a posteriori
estimate (MAP) instead of the MLE.
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be the true parameter of a normal model with i.i.d. observations Y;| X; ~
N(X;0,,0?), where the variance o2 is assumed known for simplicity. The log-
likelihood is log f(Y;; X;,0) = —#(Yl — X;0)2, and the score function (i.e.,
gradient of log-likelihood) is given by Vlog f(Vi; X;,0) = 5 (Vi — X;0)X;.
Let X; be distributed according to some unknown distribution with bounded
second moment. Assume v, = y1/n, for some 7; > 0 as the learning rate.

Then, the explicit SGD procedure in Eq. (1) is
651 = 655 + 7 (Vo — 6,5, X0) X
(5) =(1- VnXg)eig:il + MY Xn.

Procedure (5) is the least mean squares filter (LMS) in signal processing,
also known as the Widrow-Hoff algorithm (Widrow and Hoff, 1960). The
implicit SGD procedure can be derived in closed form in this problem using
update in Eq. (4) as

oM = 9m 4~y (Y, — X0 X,

1 im Tn
o BEEE R R ch
The procedure defined by Eq. (6) is known as the normalized least mean
squares filter (NLMS) in signal processing (Nagumo and Noda, 1967).

From Eq. (5) we see that it is crucial for explicit SGD to have a well-
specified learning rate parameter ;. For instance, if v X2 >> 1 then 655
will diverge to a value at the order of 271 /, /41, before converging to the true
value 0, (see Section 2.5, Lemma 2.1). In contrast, implicit SGD is more
stable to misspecification of the learning rate parameter ~;. For example, a
very large 1 will not cause divergence as in explicit SGD, but it will simply
put more weight on the nth observation Y,, X, than the previous iterate ™ , .
.o
showing that implicit SGD iterates are shrinked versions of explicit ones (see
also Section 5).

Letv? =E (X 2), then by Theorem 2.2 the asymptotic variance of #!™ (and
of 6589 satisfies nVar(6i™) — 420202/(2y102 — 1) if 29102 — 1 > 0. Since
72 /(2y1v% — 1) > 1/v2, it is best to set 41 = 1/v?. In this case nVar(f™) —
o2 /v2. Implicit SGD can thus be optimal by setting v, = (3, X2)~! in
which case ngd is exactly the OLS estimator, and #\™ is an approximate but
more stable version of the OLS estimator. Thus, the implicit SGD estimator
9im in Eq. (6) inherits the efficiency properties of Ong, with the added benefit
of being stable over a wide range of learning rates. Overall, implicit SGD is
a superior form of SGD.

Assuming for simplicity Gflg_d L = 0m, =0, it also holds i =
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1.2. Related work. Historically, the duo of explicit-implicit updates origi-
nate from the numerical methods introduced by Euler (ca. 1770) for solving
ordinary differential equations (Hoffman and Frankel, 2001). The explicit
SGD procedure was first proposed by Sakrison (1965) as a recursive sta-
tistical estimation method and it is theoretically based on the stochastic
approximation method of Robbins and Monro (1951). Statistical estimation
with explicit SGD is a straightforward generalization of Sakrison’s method
and has recently attracted attention in the machine learning community as
a fast learning method for large-scale problems (Zhang, 2004; Bottou, 2010;
Toulis and Airoldi, 2015b). Applications of explicit SGD procedures in mas-
sive data problems can be found in many diverse areas such as large-scale
machine learning (Zhang, 2004), online EM algorithm (Cappé and Moulines,
2009), image analysis and deep learning (Dean et al., 2012) and MCMC sam-
pling (Welling and Teh, 2011).

The implicit SGD procedure is less known and not well-understood. In
optimization, implicit methods have recently attracted attention under the
guise of proximal methods, such as mirror-descent (Nemirovski, 1983). In
fact, the implicit SGD update in Eq. (4) can be expressed as a proximal
update:

. 1 .
0 o =g {5110~ 6 o (i X0.6) .

From a Bayesian perspective, 6™ is the posterior mode of a model with the
standard multivariate normal A/ (6™ ; ~,I) as the prior, and log f(Y;,; X, 0)
as the log-likelihood of 6 for observation (X,,Y,). Arguably, the normalized
least mean squares (NLMS) filter (Nagumo and Noda, 1967), introduced in
Eq. (6), was the first statistical model that used an implicit update as in
Eq. (4), and was shown to be consistent and robust under excessive input
noise (Slock, 1993). From an optimization perspective, the update in Eq. (7)
corresponds to a stochastic version of the proximal point algorithm by Rock-
afellar (1976), which has been generalized through the idea of splitting al-
gorithms (Lions and Mercier, 1979; ?; Singer and Duchi, 2009); see also the
comprehensive review of proximal methods in optimization by Parikh and
Boyd (2013). Additional intuition of implicit methods has been provided by
Krakowski et al. (2007) and Nemirovski et al. (2009), who have argued that
proximal methods can fit better in the geometry of the parameter space.
Bertsekas (2011) derived the convergence rate of an implicit procedure simi-
lar to Eq. (4) on a fixed data set, and compared the rates between procedures
that randomly sampled data (X, Y,,) or simply cycled through them. Toulis
et al. (2014) derived the asymptotic variance of ™ as estimator of 6, in the
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family of generalized linear models, and provided an algorithm to efficiently
compute the implicit update of Eq. (4) in such models and in the simplified
setting where C), = I.

1.3. Contributions. Prior work on procedures similar to implicit SGD
has considered mostly an optimization setting, in which the focus is on speed
of convergence (Bertsekas, 2011, for example). Instead, we focus on statis-
tical efficiency, that is, the sampling variability of the estimator implied by
implicit and explicit SGD procedures—the relevant analysis and the results
of Theorem 2.1 and Theorem 2.2 are novel. Furthermore, our procedure,
which we generalized in Toulis and Airoldi (2015a), is different than typical
stochastic proximal gradient procedures (for example see Duchi and Singer,
2009; Rosasco et al., 2014). In such procedures the parameter updates are
obtained by combining a stochastic explicit update and a deterministic im-
plicit update. In implicit SGD there is a single stochastic implicit update,
which prevents numerical instability.

With regard to theoretical contributions, the asymptotic statistical effi-
ciency of SGD procedures (both explicit and implicit) derived in Theorem 2.2
is a key contribution of our work. Our analysis is in fact general enough that
allowed us to derive the asymptotic efficiency of other popular stochastic op-
timization procedures, notably of AdaGrad (Duchi et al., 2011) in Eq. (13)
of our paper. The asymptotic normality of implicit SGD in Theorem 2.4 is
new and enables a novel comparison of explicit SGD and implicit SGD in
terms of the normality of their iterates, which is also a clear point of depar-
ture from the typical optimization literature. The results in Section 2.5 are
also new, and formalize the advantages of implicit SGD over explicit SGD
in terms of numerical stability.

With regard to practical contributions, Algorithm 1 and its variants pre-
sented in the paper are a significant extension of our earlier work beyond
first-order GLMSs (Toulis et al., 2014, Algorithm 1). The key contribution
here is that these new algorithms make implicit SGD as simple to imple-
ment as standard explicit SGD, whenever the fixed-point computation of
the implicit update is feasible. We provide extensive applications in Sec-
tion 3 and experiments in Section 4 of implicit SGD compared to explicit
SGD. Importantly, we developed a concrete implementation of implicit SGD
through the R package sgd (Tran et al., 2015) available at https://cran.
r-project.org/web/packages/sgd/index.html to compare implicit SGD
with state-of-art procedures, including R’s glm() function (Fisher scoring),
biglm package, the elastic net (Friedman et al., 2010, glmnet), AdaGrad
(Duchi et al., 2011), Prox-SVRG (Xiao and Zhang, 2014), and Prox-SAG
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(Schmidt et al., 2013).

2. Theory. The norm ||.|| denotes the Ly norm. If a positive scalar
sequence a, is nonincreasing and a,, — 0, we write a,, | 0. For two positive
scalar sequences ay,b,, equation b, = O(a,) denotes that b, is bounded
above by a,, i.e., there exists a fixed ¢ > 0 such that b, < ca,, for all n.
Furthermore, b, = o(a,,) denotes that b, /a, — 0. Similarly, for a sequence
of vectors (or matrices) X,,, we write X,, = O(ay,) to denote || X, || = O(a,),
and write X,, = o(a,) to denote ||X,|| = o(a,). For two positive definite
matrices A, B we write A < B to express that B — A is positive definite.
The set of eigenvalues of a matrix A is denoted by eig(A); thus, A > 0 if
and only if A > 0 for every A € eig(A).

ASSUMPTION 2.1. The explicit SGD procedure in Eq. (1) and the implicit
SGD procedure in Eq. (4) operate under a combination of the following assumptions.

(a) The learning rate sequence {v,} is defined as ~y, = yin~7, where 1 > 0 is the
learning parameter, and v € (0.5,1].

(b) For the log-likelihood log f(Y; X, 0) there exists function £ such thatlog f(Y; X,0) =
U(XT0;Y), which depends on 0 only through the natural parameter X76.

(¢) Function € is concave, twice differentiable almost surely w.r.t. natural parameter
X760 and Lipschitz with constant Lo w.r.t. 0.

(d) The observed Fisher information matriz T,() = —V2¢(X]6;Y,) has non-

vanishing trace, i.e., there exists constant ' > 0 such that trace(Z,(0)) < F
almost surely, for all 0. The Fisher information matriz, Z(0,) = E (i'n(ﬂ*)>,

has minimum eigenvalue Ay > 0 and mazimum eigenvalue A; < oo. Typical
regularity conditions hold (Lehmann and Casella, 1998, Theorem 5.1, p.463).

(e) Every condition matriz C,, is a fized positive-definite matriz, such that C,, =
C + O(yn), where C' = 0 and symmetric, and C' commutes with Z(0). For
every Cy,, mineig(Cy) = A; > 0, and maxeig(C,) = A; < o0.

(f) Let Zy = E (Vlog f(Yn; Xn, 0,)V1og f(Yn; X0, 0,) | Fro1), then ||2, — Z|| =
O(1) for all n, and ||E, — E|| — 0, for a symmetric positive-definite . Let
07 o = E (e, 01225/ [[En(0)][?), then for all s > 0, 327" o7, = o(n) if
vy =1, and 0} , = o(1) otherwise.

Remarks. Assumption 2.1(a) is typical in stochastic approximation as it
implies that >, 7; = oo and Y, 72 < o0, as posited by Robbins and Monro
(1951). Assumption 2.1(b) narrows our focus to models for which the like-
lihood depends on parameters 6 through the linear combination XT6. This
family of models is large and includes generalized linear models, Cox pro-
portional hazards models, and M-estimation. Furthermore, in Section 5 we
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discuss a significant relaxation of Assumption 2.1(b). Assumption 2.1(c) puts
a Lipschitz condition on the log-likelihood but it is used only for deriving
finite-sample error bounds in Theorem 2.1—it is possible that this condition
can be relaxed. Assumption 2.1(d) is equivalent to assuming strong convex-
ity for the negative log-likelihood, which is typical for proving convergence in
probability. The assumption on the observed Fisher information is less stan-
dard and, intuitively, it posits that a minimum of statistical information is
received from any data point, at least for certain model parameters. Making
this assumption allows us to forgo boundedness assumptions on the errors of
stochastic gradients that were originally used by Robbins and Monro (1951),
and have since been standard. Finally, Assumption 2.1(f) posits the typical
Lindeberg conditions that are necessary to invoke the central limit theo-
rem and prove asymptotic normality; this assumption follows the conditions
defined by Fabian (1968) for the normality of explicit SGD procedures.

2.1. Finite-sample error bounds. Here, we derive bounds for the errors
E(]|0™ — 6,]|?) on a finite sample of fixed size n.

THEOREM 2.1. Let 6, = E (||0i" — 6,]|?). Suppose that Assumptions
2.1(a),(b),(c), (d), and (e) hold. Then, there exist constants ng > 0 and
k=14 2y1p\As for some p € (0,1] such that,

—2
< 4LEN 1k

n =

n~7 +exp (—log k- ¢ (n)) [6o + £™0T?,

where T? = 4L(2))\762 SN2 < 00, and ¢(n) = n'77 if v < 1, and ¢ (n) =
logn if v = 1.

Not surprisingly, implicit SGD in Eq. (4) matches the asymptotic rate of
explicit SGD in Eq. (1). In particular, the iterates ™ have squared error
with rate O(n~7), as seen in Theorem 2.1, which is identical to the rate
of error for the explicit iterates ged (Benveniste et al., 1990, Theorem 22,
p.244). One way to explain intuitively this similarity in convergence rates is
to assume that both explicit and implicit SGD are at the same estimate 6.
Then, using definitions in Eq. (1) and in Eq. (4), a Taylor approximation of
the gradient Vlog f(Y;,; Xn, ™) yields

(8) A0 & [+ 7aZa(60)] ' A,

where AH}{H = Gilm — 6y and AH,Slgd = Hflgd — #y. Therefore, as n — oo, we
have AGN" ~ Aﬁflgd, and the two procedures coincide.
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PROPERTIES OF ESTIMATORS BASED ON STOCHASTIC GRADIENTS 9

Despite the similarity in convergence rates, the critical advantage of im-
plicit SGD—more generally of implicit procedures—is their robustness to
initial conditions and excess noise. This can be seen in Theorem 2.1 where
the implicit procedure discounts the initial conditions E (||05™ — 6.|?) at
an exponential rate through the term exp(—logk - ¢(n)). Importantly, the
discounting of initial conditions happens regardless of the specification of
the learning rate. In fact, large values of v; can lead to faster discounting,
and thus possibly to faster convergence, however at the expense of increased
variance as implied by Theorem 2.2, which is presented in the following sec-
tion. The implicit iterates are therefore unconditionally stable, i.e., virtually
any specification of the learning rate will lead to a stable discounting of the
initial conditions.

In contrast, explicit SGD is known to be very sensitive to the learning
rate, and can numerically diverge if the rate is misspecified. For example,
Moulines and Bach (2011, Theorem 1) showed that there exists a term
exp(L?y3n'=%7), where L is a Lipschitz constant for the gradient of the
log-likelihood, amplifying the initial conditions E(Hﬁggd — 04]|%) of explicit
SGD, which can be catastrophic if the learning rate parameter 7, is misspec-
ified.? Thus, although implicit and explicit SGD have identical asymptotic
performance, they are crucially different in their stability properties. This is
investigated further in Section 2.5 and in the experiments of Section 4.

2.2. Asymptotic variance and optimal learning rates. In the previous sec-
tion we showed that #™ — 6, in quadratic mean, i.e., the implicit SGD iter-
ates converge to the true model parameters 6., similar to classical results for
the explicit SGD iterates 6589 Thus, 6im and 0584 are consistent estimators
of 0. In the following theorem we show that both SGD estimators have the
same asymptotic variance.

THEOREM 2.2.  Consider SGD procedures in Eq. (1) and in Eq. (4), and
suppose that Assumptions 2.1(a),(c),(d),(e) hold, where v = 1, and that

2v1CZ(0,) = I. The asymptotic variance of the explicit SGD estimator in
Eq. (1) satisfies

nVar (9;gd) 42 (20 CT(0,) — 1)~ CL(6,)C.

2The Lipschitz conditions are different in the two works, however this does not affect
our conclusions. Our result remains effectively unchanged if we assume Lipschitz continuity
of the gradient V/ instead of the log-likelihood ¢, similar to Moulines and Bach (2011);
see comment after proof of Theorem 2.1.
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The asymptotic variance of the implicit SGD estimator in Eq. (4) satisfies
nVar (0) — 77 (271CZ(0,) — 1)~ CZ(6,)C.

Remarks. Although the implicit SGD estimator 6™ is significantly more
stable than the explicit estimator 655 (Theorem 2.1), both estimators have
the same asymptotic efficiency in the limit according to Theorem 2.2. This
implies that implicit SGD is a superior form of SGD, and should be preferred
when the calculation of implicit updates in Eq. (4) is computationally feasi-
ble. In Section 3 we show that this is possible in a large family of statistical
models, and illustrate with several numerical experiments in Section 4.1.

Asymptotic variance results in stochastic approximation similar to The-
orem 2.2 were first obtained by Chung (1954), Sacks (1958), and followed
by Fabian (1968), Polyak and Tsypkin (1979), and several other authors
(see also Ljung et al., 1992, Parts I, IT). We contribute to this literature in
two important ways. First, our asymptotic variance result includes implicit
SGD, which is a stochastic approximation procedure with implicitly defined
updates, whereas other works consider only explicit updates. Second, in our
setting we estimate recursively the true parameters 6, of a statistical model,
and thus we can exploit the typical regularity conditions of Assumption
2.1(d) to derive the asymptotic variance of 6™ (and 63%%) in a simplified
closed-form. We illustrate the asymptotic variance results of Theorem 2.2 in
Section 4.1.1.

2.2.1. Optimal learning rates. Crucially, the asymptotic variance for-
mula of Theorem 2.2 depends on the limit of the sequence C), used in the
SGD procedures of Eq. (1) and Eq. (4). We distinguish two classes of pro-
cedures, one where ), = I, known as first-order procedures, and a second
class where C), is not trivial, known as second-order procedures.

In first-order procedures only gradients are used in the SGD procedures.
Inevitably, no matter how we set the learning rate parameter v, first-order
SGD procedures will lose statistical efficiency. We can immediately verify
this by comparing the asymptotic variance in Theorem 2.2 with the asymp-
totic variance of the maximum likelihood estimator (MLE), denoted by
0% on a data set with N data points {(X,,Y,)}, n = 1,2,...,N. Un-
der the regularity conditions of Assumption 2.1(d), the MLE is the asymp-
totically optimal unbiased estimator and N Var (9]11\}15 — 9*) — Z(6,)"t. By
Theorem 2.2 and convergence of implicit SGD, it holds N Var (9}? — 0*) —
Y2 (2v1Z(0x) — I)~*Z(0,), which also holds for Gi\%d. For any 7; > 0 we have
as an identity that

9) ¥ (@nZ(0.) — )7I(0.) = Z(0.) "
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PROPERTIES OF ESTIMATORS BASED ON STOCHASTIC GRADIENTS 11

The proof is rather quick if we consider \; € eig(Z(6y)) and note that
Y2Xi/(2v1Ai — 1) is the corresponding eigenvalue of the left-hand matrix
in Ineq. (9) and 1/); is the eigenvalue of Z(6,)~!, and that (2y1Af — 1) > 0
implies that o
YN/ (2 — 1) > 1/A,

for every \; € eig(Z(64)). Therefore, both SGD estimators lose information
and this loss can be quantified exactly by Ineq. (9). This inequality can
also be leveraged to find the optimal choice for 1 given an appropriate
objective. As demonstrated in the experiments in Section 4, this often suffices
to achieve estimates that are comparable with MLE in statistical efficiency
but with substantial computational gains. One reasonable objective is to
minimize the trace of the asymptotic variance matrix, i.e., to set v, equal to

(10) vt = arg Z>rr11/1£1)\7f i 2\ /(2zX; — 1).

Eq. (10) is defined under the constraint z > 1/(2Af) because Theorem 2.2
requires 2y, Z(0,) — I to be positive definite. o

Of course, the eigenvalues A; are unknown in practice and need to be
estimated from the data. This problem has received significant attention re-
cently and several methods exist (see Karoui, 2008, and references within).
We will use Eq. (10) extensively in our experiments (Section 4) in order to
tune the SGD procedures. However, we note that in first-order SGD pro-
cedures, knowing the eigenvalues \; of Z(6,) does not necessarily achieve
statistical efficiency because of the spectral gap of Z(6,), i.e., the ratio be-
tween its maximum eigenvalue /\7f and minimum eigenvalue A; for instance,

if \f = )\Tc, then the choice of learning rate parameter according to Eq. (10)
leads to statistically efficient first-order SGD procedures. However, this case
is not typical in practice, especially in many dimensions.

In second-order procedures, we assume non-trivial condition matrices C,.
Such procedures are called second-order because they usually leverage curva-
ture information from the Fisher information matrix (or the Hessian of the
log-likelihood). They are also known as adaptive procedures because they
adapt their hyperparameters, i.e., learning rates =, or condition matrices
Ch, according to observed data. For instance, let C,, = Z(6,)~! and 71 = 1.
Plugging in C,, = Z(6,)~! in Theorem 2.2, the normalized asymptotic vari-
ance of the SGD estimators is

7%(2711-(9*)711—(9*) - 1)711(9*)711(9*)1(9*)71 = I(Q*)ilv

which is the theoretically optimal asymptotic variance of the MLE, i.e., the
Cramér-Rao lower bound.
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Therefore, to achieve asymptotic efficiency, second-order procedures need
to estimate the Fisher information matrix at 0,. Because 6, is unknown one
can simply use C,, = Z(6™)~! (or C,, = I(Gfﬁdl)_l) as an iterative estimate
of Z(6,), and the same optimality result holds. This approach in second-order
explicit SGD was first studied by Sakrison (1965), and later by Nevelson
and Khasminskii (1973, Chapter 8, Theorem 5.4). It was later extended by
Fabian (1978) and several other authors. Notably, Amari (1998) refers to
the direction 7 (Gflg_d D)W log f(Ya; X, HZ‘cg_d 1) as the “natural gradient” and
uses information geometry arguments to prove statistical optimality.

An alternative way to implement second-order procedures is to use stochas-
tic approximation to estimate Z(6,), in addition to the approximation proce-
dure estimating 6,. For example, Amari et al. (2000) proposed the following
second-order procedure,

07:1 = (1 - an)0711 + apVlog f(Yna Xn, :f]—l)VIOg f(Yn;Xna szm—l)T

n—

(11) 63" = 03" 1 + 7, CnV log f (Yo X, 032 1),

where a,, = a1 /n is a learning rate sequence, separate from ~,. By standard
stochastic approximation, C;;! converges to Z(6,), and thus the procedure
in Eq. (11) is asymptotically optimal. However, there are two important
problems with this procedure. First, it is computationally costly because of
matrix inversions. A faster way is to apply quasi-Newton ideas. SGD-QN de-
veloped by Bordes et al. (2009) is such a procedure where the first expensive
matrix computations are substituted by the secant condition. Second, the
stochastic approximation of Z(6,) is usually very noisy in high-dimensional
problems and this affects the main approximation for 6,. Recently, more
robust variants of SGD-QN have been proposed (Byrd et al., 2014).

Another notable adaptive procedure is AdaGrad (Duchi et al., 2011),
which is defined as

Ot = O, + diag (Vlog f(Ya; Xn, 022)V log f(Y; Xy, 0292)7)

n— n—1 n—1
(12) 022 = 0292 + 4,C/ 2V log f(Yy; Xn, 02%),

where diag(-) takes the diagonal matrix of its matrix argument, and the
learning rate is set constant to 7, = ;. AdaGrad can be considered a
second-order procedure because it tries to approximate the Fisher informa-
tion matrix, however it only uses gradient information so technically it is
first-order. Under appropriate conditions, C;;! — diag(Z(,)) and a sim-
ple modification in the proof of Theorem 2.2 can show that the asymptotic
variance of the AdaGrad estimate is given by

(13) VnVar (62%) — %diag(z(e*))-l/?
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This result reveals an interesting trade-off achieved by AdaGrad and a sub-
tle contrast to first-order SGD procedures. The asymptotic variance of Ada-
Grad is O(1/4/n), which indicates significant loss of information. However,
this rate is attained regardless of the specification of the learning rate param-
eter 1.3 In contrast, as shown in Theorem 2.2, first-order SGD procedures
require 2v1Z(0,) — I > 0 in order to achieve the O(1/n) rate, and the rate
is significantly worse if this condition is not met. For instance, Nemirovski
et al. (2009) give an example of misspecification of v; where the rate of first-
order explicit SGD is O(n™°), and € can be arbitrarily small. The variance
result in Eq. (13) is illustrated in the numerical experiments of Section 4.1.1.

2.3. Optimality with averaging. As shown in Section 2.2.1, Theorem 2.2
implies that first-order SGD procedures can be statistically inefficient, espe-
cially in many dimensions. One surprisingly simple idea to achieve statistical
efficiency is to combine larger learning rates with averaging of the iterates.
In particular, we consider the procedure

6 = O + 5,V log f (Yo X, 00,

: 1 < .
14 elm:f§ gim
(14) P ILE

where 0™ are the typical implicit SGD iterates in Eq. (4), and 7, = y1n77,
v € [0.5,1). Under suitable conditions, the iterates 6im are asymptotically
efficient. This is formalized in the following theorem.

THEOREM 2.3. Consider the SGD procedure defined in Eq. (14) and
suppose Assumptions 2.1(a),(c),(d), and (e) hold, where v € [0.5,1). Then,
0im converges to 0, in probability and is asymptotically efficient, i.e.,

nVar (@) — Z(6,)" "

Remarks. In the context of explicit stochastic approximations, averaging
was first proposed and analyzed by Ruppert (1988) and Bather (1989). Rup-
pert (1988) argued that larger learning rates in stochastic approximation un-
correlates the iterates allowing averaging to improve efficiency. Polyak and

3 This follows from a property of recursions (Toulis and Airoldi, 2016, Lemma 2.4). On
a high-level, the term ~,—1/v» is important for the variance rates of AdaGrad and SGD.
When 7, o< 1/n, as in Theorem 2.2, it holds that v,—1/v% = 1 4+ yn/71 + O(42), which
explains the quantity 2Z(0.) — I /1 in first-order SGD. The rate O(1/n) is attained only
if 2Z(0,) —I/v1 = 0. When 7, < 1/4/n, as in AdaGrad, it holds that vp—1/7» = 14+ 0(7»)
and the rate O(1/4/n) is attained without any additional requirements.
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Juditsky (1992) expanded the scope of averaging by proving asymptotic opti-
mality in more general explicit stochastic approximations that operate under
suitable conditions similar to Theorem 2.3. Polyak and Juditsky (1992) thus
proved that slowly-converging stochastic approximations can be improved
by using larger learning rates and averaging of the iterates. Recent work has
analyzed explicit updates with averaging (Zhang, 2004; Xu, 2011; Bach and
Moulines, 2013; Shamir and Zhang, 2012), and has shown their superiority
in numerous learning tasks. More recently, Toulis et al. (2016) derived the
finite-sample error bounds of the averaged implicit SGD estimator.

2.4. Asymptotic normality. Asymptotic distributions, or more generally
invariance principles, are well-studied in classical stochastic approximation
(Ljung et al., 1992, Chapter I1.8). In this section we leverage Fabian’s theo-
rem (Fabian, 1968) to show that iterates from implicit SGD are asymptoti-
cally normal.

THEOREM 2.4.  Suppose that Assumptions 2.1(a),(c),(d),(e),(f) hold. Then,
the iterate 0™ of implicit SGD in Eq. (4) is asymptotically normal, such that

n2 (05 — 0,) — N, (0, %),
where ¥ = ~? (21 CZ(0,) — ) CZ(6,)C.

Remarks. The combined results of Theorems 2.1, 2.2, and 2.4 indicate
that implicit SGD is numerically stable and has known asymptotic variance
and distribution. Therefore, contrary to explicit SGD that has severe sta-
bility issues, implicit SGD emerges as a stable estimation procedure with
known standard errors, which enables typical statistical tasks, such as confi-
dence intervals, hypothesis testing, and model checking. We show empirical
evidence supporting this claim in Section 4.1.2.

2.5. Stability. To illustrate the stability, or lack thereof, of both SGD
estimators in small-to-moderate samples, we simplify the SGD procedures
and inspect the size of the biases E(Gf{gd —6,) and E(0™ — 6,). In par-
ticular, based on Theorem 2.1, we simply assume the Taylor expansion
Viog f(Yn; Xn,0n) = —Z(0+)(0r, — 0x) + O(yn); to simplify further we ig-
nore the remainder term O(7y).

Under this simplification, the SGD procedures in Eq. (1) and in Eq. (4)
can be written as follows:

(15) E (efgd - 9*) = (I — 7 Z(0,))E (9?55‘1 - 9*) — Pl'by,
(16) E (03" — 0.) = (I + mZ(6,))'E (621 — 6.) = QTbo,
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where PP =[], (I — vZ(64)), Q7 =TT (I +%Z(0,))~ L, and by denotes
the initial bias of the two procedures from a common starting point 6.
Thus, the matrices P[* and Q)7 describe how fast the initial bias decays
for the explicit and implicit SGD respectively. In the limit, P’ — 0 and
Q' — 0 (Toulis and Airoldi, 2016, proof of Lemma 2.4), and thus both
methods are asymptotically stable.

However, the explicit procedure has significant stability issues in small-
to-moderate samples. By inspection of Eq. (15), the magnitude of P/ is
dominated by Af, the maximum eigenvalue of Z(6,). Furthermore, the rate
of convergence is dominated by Az, the minimum eigenvalue of Z(6,).* For
stability, it is desirable |1—~;\;| < 1, for all eigenvalues ); € eig(Z(6)). This
implies the requirement v; < 2 /)Tf for stability. Furthermore, Theorem 2.2
implies the requirement y; > 1/2\; for fast convergence. This is problematic

in high-dimensional settings because )Tf is typically orders of magnitude
larger than A;. Thus, the requirements for stability and speed of convergence
are in conflict in explicit procedures: to ensure stability we need a small
learning rate parameter v;, thus paying a high price in convergence which
will be at the order of O(n~"2%), and vice versa.

In contrast, the implicit procedure is unconditionally stable. The eigen-
values of Q7 are X; = [['_; 1/(1 +m\i/j) = O(n=7%). Critically, it is no
longer required to have a small v, for stability because the eigenvalues of
Q7 are always less than one. We summarize these findings in the following
lemma.

LEMMA 2.1, Let Ar = maxeig(Z(0,)), and suppose v, = m1/n and
mAr > 1. Then, the mazimum eigenvalue of Pl* satisfies

max max eig(Pl") = @(271W/\ /Y1)
n>
For the implicit method,

max max eig(Q7) = O(1).
n>0
Remarks. Lemma 2.1 shows that in the explicit SGD procedure the effect
from the initial bias can be amplified in an arbitrarily large way before fading
out, if the learning rate is misspecified (i.e., if 74 >> 1/A¢). This sensitivity
of explicit SGD is well-known and requires problem-specific considerations
to be avoided in practice, e.g., preprocessing, small-sample tests, projections,

“To see this, note that the eigenvalues of P/ are \] = [L;Q—mAi/d) = O(n~"2) if
0 < 71A; < 1. See also proof of Lemma 2.1.
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truncation (Chen et al., 1987). In fact, there exists voluminous work, which
is still ongoing, in designing learning rates to stabilize explicit SGD; see,
for example, a review by George and Powell (2006). Implicit procedures
render such ad-hoc designs obsolete because they remain stable regardless
of learning rate design, and still maintain the asymptotic convergence and
efficiency properties of explicit SGD.

3. Applications. Here, we show how to apply implicit SGD in Eq. (4)
for estimation in generalized linear models, Cox proportional hazards, and
more general M-estimation problems. We start by developing an algorithm
that efficiently computes the implicit update in Eq. (4), and is applicable to
all aforementioned models.

3.1. Efficient computation of implicit updates. The main difficulty in ap-
plying implicit SGD is the solution of the multidimensional fixed-point equa-
tion (4). In a large family of models where the likelihood depends on the
parameter 0, only through the natural parameter X;\6,, the solution of the
fixed-point equation is feasible and computationally efficient. We prove the
general result in Theorem 3.1.

For the rest of this section we will treat /(XT76;Y") as a function of the
natural parameter XT6 for a fixed outcome Y. Thus, ¢(XT76;Y) will refer
to the first derivative of £ with respect to X768 with fixed Y.

THEOREM 3.1.  Suppose Assumption 2.1(b) holds, then the gradient of
the log-likelihood is a scaled version of covariate X, i.e., for every 6 € RP
there is a scalar A € R such that

Viog f(Y; X,0) = AX.

Thus, the gradient in the implicit update in Eq. (4) is a scaled version of
the gradient calculated at the previous iterate, i.e.,

(17) Viog f(Yp; Xn, 0™) = X\, Vlog f(Yr; X, 6 ),

»Yn—1
where the scalar A\, satisfies

(18) Al/(XTOM 1Y) = £/ (XTOM | + v Al (XTOM 15 V) X T O X3 V)

Remarks. Theorem 3.1 implies that computing the implicit update in
Eq. (4) reduces to numerically solving the one-dimensional fixed-point equa-~
tion for A,—this idea is implemented in Algorithm 1. As shown in the proof
of Theorem 3.1, this implementation is fast because A, lies on an interval
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By, of size O(7,). We also note that Theorem 3.1 can be readily extended
to cases with linearly separable regularizers, for instance, regularizers using
the Ly norm ||0]| = ), |0;|. In such cases, there are additional fixed-point
equations as in Step 9 of Algorithm 1 that involve the components of the
regularizer. More generally, for families of models that do not satisfy As-
sumption 2.1(b) there are methods to approzimately perform the implicit
update—we discuss one such method in Section 3.3.

3.2. Generalized linear models