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(Freedman and Lane, ca 1980)

Freedman and Lane (1980?, 1983) criticized the classical framework of inference.
This framework relies on iid samples from a hypothetical superpopulation, which
they thought was problematic.
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Proposed procedure by F&L

Suppose we observe {(yi, xi, zi)}, Y = house price, X = size, Z = #bathrooms.

We ask whether Z is “significant for” Y .

1 Fit the “null model” Y ∼ X. Obtain Ŷ0 and residuals e = Y − Ŷ0.

2 Calculate the correlation coefficient, r = r(Z, e).

3 Calculate a p-value according to permuted residuals:

pval =
1

n!

∑
π

1{r(Z, πe) > r}.

According to F&L, this offers a “permutation interpretation” of significance levels
that makes no assumption about the data generating mechanism.
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A critique

F&L never fleshed out what was the actual null being tested.

They seemed to think that their approach was a logical extension of Fisherian
randomization. Talking about Fisher’s permutation test of independence
between two random samples, they wrote:

They were right to think that significance levels need not only have a classical
probabilistic interpretation.

But, ultimately, I believe they were wrong to think that you can do this with no
assumptions on the data generating mechanism.
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Overview of this work

This paper also attempts an extension of Fisherian randomization to
observational settings and inference (specifically, regression) following F&L.

We impose invariance assumptions on the DGP. We thus use the framework
of (Lehman and Romano, 2005) as a natural foundation.

Two main contributions:

1 Theoretical. Is it possible to conduct inference under only invariances?

Under what conditions? Benefits compared to classical methods of
inference? (e.g., bootstrap, “robust errors”)

2 Applied. A unified method of inference for different problem structures.

In contrast, classical methods require a different variant for each different
structure, which frequently confounds applied researchers

This contrast will be more evident in complex structures such as double
clustering.
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I. Setup, main method and general results

II. Specialization to the linear model
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Setup

Consider the model

yi = f(xi, β) + εi

where

yi ∈ R is the response; xi ∈ Rp are covariates; f may be unknown;

εi ∈ R are unobserved errors.

The errors are invariant to Rn → Rn transformations from an algebraic group Gn:

ε
d
= gε | X, for all g ∈ Gn. (1)

Notes:

- (yi, xi) are not necessarily i.i.d.;

- ε could depend on X in complex ways (examples coming soon);

- No other assumptions (e.g., moment conditions) on the distribution of (X, ε).

* (Eq (1) extends the framework of (Lehman and Romano, 2005) in the observational setting.)

7 / 34



Examples of Gn

Errors may have a complex structure. For example, they may be

Exchangeable; e.g., εi = g0,n + g1,nεi, εi
iid∼ F . g0,n, g1,n possibly unknown.

Non-exchangeable but sign symmetric; e.g., εi = g0,n + gi,nεi.

Exchangeable only within certain clusters; e.g., εck = g0,n + ηc + g1,nεck.

Partially exchangeable in a dyadic structure; e.g., εrck = g0,n + ξr + ηc + g1,nεrck.

...

These structures can be encoded in a parsimonious way through (1).

Gn is the inferential primitive because it encodes our main inferential assumption.
This leads to the problem of invariant inference on β.

Throughout, we assume Gn known. It would be interesting (in future work) to
consider a setting where Gn can be learned.

This assumption may be uncomfortable but it replaces the i.i.d. assumption.
An alternative is “approximate symmetry” (Canay et al, 2017).
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Testing the global null is easy

Suppose we want to test a global null hypothesis,

H0 : β = β0.

Take a test statistic Tn such that Tn
H0= tn(ε) under the null for a known measurable

function tn : Rn → R. Then:

1 Calculate ε0 = y −Xβ0, the errors under the null.

2 Calculate Tn = t in the sample.

3 Calculate the p-value based on transformed errors:

pval =
1

|Gn|
∑

g
1{tn(gε0) > t}. (2)

Notes:

- Not hard to find an appropriate tn in many problems.

- Validity of (2) is guaranteed by standard randomization theory (Lehman and
Romano, 2005).
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Properties

This test has some unique and highly desirable properties:

Exact. The test is valid for any finite sample n > 0.

Robust. No conditions on distribution of (ε,X); test is invariant to
location-scale transformations of tn.

Simple. The test is easy to implement and communicate.

Of course, the downside here is that the null is too strong.

What if we wanted to test a simpler hypothesis, e.g., H0 : β1 = 0?

One approach is to approximate the exact test using residuals from an estimator.
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Main Residual Randomization Procedure

Suppose we want to test a non-global H0; e.g., H0 : a′β = a0.

Take an estimator β̂n of β under the null (not necessarily “well behaved”). Then:

1 Calculate ε̂0 = y −Xβ̂n, the residuals under the null.

2 Calculate Tn = t in the sample.

3 Calculate the p-value based on transformed errors:

p̂val =
1

m

m∑
r=1

1{tn(gr ε̂0) > t}, gr
iid∼ Unif(Gn). (3)

Notes:

- This is a form of residual randomization because we transform the residuals.

- We use this same procedure (3) for all problem structures (unified method),
and just “plug-and-play” Gn.

- We will ask: Under what conditions is (3) valid? Do we keep any of the
aforementioned desirable properties of the exact test?
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Validity

Theorem

Let Λn = tn(G1ε)− tn(G2ε) and let ∆n = tn(Gε̂)− tn(Gε), where
G,G1, G2 ∼ Unif(Gn). Suppose that

P (Λn = 0) → 0, and
E(∆2

n)

E(Λ2
n)

→ 0.

Then, residual randomization is asymptotically valid under H0, that is,

lim sup
n→∞

E(φn|H0) = α.

Notes:

- Validity holds asymptotically if the variance of the spacings in the infeasible
test (Λn) dominates the approximation errors of the feasible test (∆n).

- Notably, consistency of β̂ or “
√
n-asymptotics” are not required;

cf. (Chernozhukov et. al., 2021) on a permutation test using residuals in a
panel data setting.
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Proof sketch

The residual randomization test compares Tn = t(ε) with the other approximate red
values from the feasible test. It would be exact if it compared to the exact values.

The quantiles of the approximate values (and so the test decision) are very similar
to the exact ones as long as ∆n � Λn.

They are actually identical when max∆n ≤ minΛn.

This allows the residual randomization test to inherit some of the robustness
properties of the idealized test, and our analysis is tight enough to capture that.
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Finite sample rates

Theorem

Let
E(∆2

n)

E(Λ2
n)

= ζ2n → 0, and Λ̄n = Λn

Var(Λn)1/2
. Suppose also a γ-Hölder continuity

property on FΛ̄n
such that FΛ̄n

(ε)− FΛ̄n
(−ε) = O(εγ), ε > 0. Then,

E(φn | H0) = α+AγO(ζ2γ/(2+γ)
n ).

Notes:

- Parameter γ controls the tails of the spacings variable, Λn. Smaller γ < 1
correspond to heavy tailed (X, ε). Also, Aγ = O(1).

- No further assumptions on the distribution/asymptotics of (X, ε).

- Under regularity conditions, ζ2n = O(1/n), and γ = 1 (e.g., normal Λ̄n).
This implies the rate O(n−1/3), which may be viewed as the “price for
robustness”.

- (Not shown here) The test is also consistent for all alternatives τn/σn → ∞,
where τn is location shift under the alternative, and σ2

n = E[t2n(ε)].
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I. Setup, main method and general results

II. Specialization to the linear model
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Linear model

In the linear setting, these results translate into simple and interpretable conditions.

From now on, we assume:

y = Xβ + ε, linear model.

H0 : a′β = a0, linear hypothesis.

Tn = a′β̂ − a0 with β̂ being the OLS estimator.

Under the null, Tn = tn(ε) for tn(u) = a′(X>X)−1X>u, as required.

Notes:

- We can also handle multiple linear hypotheses (not today).

- In the residual randomization test, we could use the residuals calculated under
the null through a constrained OLS estimator. We analyze this test as well.
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Exchangeable errors

Consider an error structure of the form

εi = g0,n + g1,nεi, εi
iid∼ F.

- Terms g0,n, g1,n may depend on X but are common for all i.

- Then, (εi) are exchangeable; i.e., (1) holds with Gn = permutation group.

Theorem

In the linear model, suppose that the errors are exchangeable. Then,

a1 = 0, and p/n = o(1)

are sufficient for asymptotic validity of residual randomization.

Notes:

- Basically no conditions on (X, ε) distribution. OLS could even be inconsistent.

- Validity even when p → ∞, as long as p = o(n).

- Exchangeability is a strong inferential assumption. This is line with the concept
of exchangeability as a “mixture of i.i.d. sequences” from de Finetti’s theorem.
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Comparison with “residual bootstrap”

In this setting, the residual randomization procedure is, operationally, almost
identical to the “residual bootstrap” procedure.

To prove validity of the residual bootstrap, Freedman (1981) needed:

1 ε1, . . . , εn ∼ i.i.d., with mean 0 and finite variance σ2.

2 (1/n)X>X → V , where V is positive definite. Thus, p < ∞.

See also (Bickel et al., 1981) and (Lopes, 2014) for the high dimensional regime.

These are stronger conditions than residual randomization.

The difference exists because bootstrap is trying to approximate the full sampling

distribution of β̂ and so it needs regularity conditions to ensure convergence in
distribution at the appropriate rate.
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Clustered errors

In many problems the datapoints are clustered. Usually, the errors are assumed
independent across clusters, but possibly correlated within.

(e.g., observations clustered by state, or school/grade, and so on.)

There are numerous analytic “cluster-robust” error methods. Theory tends to be
complicated, and the various methods have problems with small samples and
non-normality.

“Cluster wild bootstrap” (Cameron et al, 2008) is a popular alternative.

Its theory is complicated, however, and cannot be easily extended to more
complex structures.
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Cluster invariances

Let i = (c, k) in cluster c, replicate k. Consider an error structure of the form

εi = εck = g0,n + ηc + gc,nεck.

Assume (ηc) and (εck) are independent, and ε are iid.

- If ηc are exchangeable then Gn could be permutations within clusters;

- If ηc and εck are sign symmetric then Gn could be sign flips on the cluster level.

- Or both invariances could hold.
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Validity under clustered errors

Theorem (Summary)

Invariant Condition

permutation within clusters λxλεp/n = o(1)

sign symmetry across clusters λxλεp
3 ∑J

c=1(n
2
c/n

2) = o(1)

both either

Notes:

- Here, λx refers to a leverage condition on X>X; e.g., condition number, max
leverage ratio across clusters, and so on.

- λε represents similar leverage conditions on the error distribution; e.g.,
condition number of Vε, max error variance ratio between clusters.

- Under standard cluster assumptions, λx, λε = O(1). In residual
randomization, these quantities are allowed to increase.

- Also allows p → ∞.
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Finite number of clusters

The setting with a finite number of clusters (J < ∞) is tricky. Canay et.al. (2017)
have showed that cluster wild bootstrap is asymptotically valid whenever

X>
c Xc ∝ (X>X), in the limit. (HC)

This is a cluster homogeneity condition, and is generally strong.

In this setting, residual randomization is also asymptotically valid..

- ...under (HC) and sign symmetric cluster errors.

- ...under exchangeable errors within clusters.

- ... or under both conditions.

Moreover, whenever (HC) holds in the sample, then the residual randomization test
using restricted OLS residuals is finite sample valid. Example: Behrens-Fisher problem
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Simulation: One-way clustered data

The data generating model is

yi = β0 + xiβ + εi, xi = xc + xic, εi = ηc + εic, i ∈ [c]. (4)

We consider the following simulation settings:

ηc = 0 or ηc ∼ N(0, 1); and εic ∼ N(0, 1), all i.i.d..

xc ∼ N(0, 1) or xc ∼ .5LN(0, 1), the log-normal distribution.

For heteroskedasticity, we scale the errors by 3|xi|.
Jn ∈ {10, 15, 20} with 30 units per cluster; thus, n ∈ {300, 450, 600}.
(β0, β1) = (0, 0) with homoskedasticity; and (β0, β1) = (1, 0) with
heteroskedasticity.
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(A) Homoskedastic

cluster effect (ηc)

ηc = 0 (no clustered effects) ηc ∼ N(0, 1) (clustered effects)

number of clusters (J )

J = 10 J = 15 J = 20 J = 10 J = 15 J = 20

cluster cov. (xc)

N(0,1) LN(0,1)

OLS (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Standard 0.057 0.051 0.054 0.051 0.050 0.053 0.490 0.382 0.480 0.394 0.493 0.421

Cluster robust 0.086 0.090 0.076 0.079 0.061 0.077 0.103 0.110 0.081 0.089 0.081 0.090

Rands.

RR-c-sign 0.059 0.047 0.054 0.049 0.047 0.054 0.053 0.055 0.056 0.048 0.055 0.050

RR-c-double 0.061 0.054 0.056 0.052 0.051 0.056 0.055 0.052 0.054 0.046 0.051 0.050

(B) Heteroskedastic

ηc = 0 ηc ∼ N(0, 1)

J = 10 J = 15 J = 20 J = 10 J = 15 J = 20

OLS (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Standard 0.228 0.249 0.244 0.264 0.239 0.286 0.278 0.274 0.301 0.303 0.301 0.309

Cluster robust 0.095 0.140 0.085 0.116 0.074 0.114 0.100 0.126 0.091 0.124 0.075 0.121

Rands.

RR-c-sign 0.055 0.084 0.055 0.072 0.052 0.072 0.049 0.065 0.059 0.071 0.056 0.072

RR-c-double 0.205 0.194 0.198 0.174 0.183 0.170 0.166 0.167 0.168 0.163 0.150 0.155

Table: Rejection rates under the null, H0 : β1 = 0. Method “RR-c-sign” is the residual
randomization test with cluster sign symmetry. “RR-c-double” also permutes within clusters.
Column (1) corresponds to normal covariates; and (2) corresponds to lognormal covariates.
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Two-way clustered errors

In many problems there is more structure; e.g., (school, classroom), (state, city),
(firm, department), etc.

Certain variants of “cluster-robust” error methods that have been extended to
two-way clustering (Cameron et al, 2011). These methods (including their
implementations) have the same problems as before, and may even give invalid
variance estimates.

Official implementations (at least in R) are highly problematic.

Bootstrap approaches have only recently appeared (Davezies et.al., 2018),
(Menzel, 2017), (McKinnon et.al., 2021).

Their theory is extremely complex so far, and remains limited. For example, it
requires that both clusters increase in size. Additional restrictions in the DGP.
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Two-way cluster invariance

Let i = (r, c, k) in “row cluster” r, “column cluster” c, replicate k. Suppose

εi = εrck = g0,n + ξr + ηc + g1,nεrck.

Assume (ξr), (ηc) and (εck) are mutually independent, and εrck are iid.

- If ξr, ηc are exchangeable then ε have a “partial exchangeability”
property (Aldous, 1981). Then, Gn denotes row-wise or column-wise
permutations in a two-array representation of ε.

- If ξ = η and there is one replication per cell, then the same Gn holds as above
with the row-wise and column-wise permutations coupled.
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Partial exchangeability

We arrange ε in a two-dim array:

Let E =

(
{ε1, ε2} {ε5, ε6}
{ε3, ε4} {ε7, ε8}

)
≡

(
{ε11(1), ε11(2)} {ε12(1), ε12(2)}
{ε21(1), ε21(2)} {ε22(1), ε22(2)}

)
.

Consider the following error transformations.

E d
=

(
{ε21(1), ε21(2)} {ε22(1), ε22(2)}
{ε11(1), ε11(2)} {ε12(1), ε12(2)}

)
d
=

(
{ε22(1), ε22(2)} {ε21(1), ε21(2)}
{ε12(1), ε12(2)} {ε11(1), ε11(2)}

)
d
=

(
{ε22(2), ε22(1)} {ε21(1), ε21(2)}
{ε12(1), ε12(2)} {ε11(2), ε11(1)}

)
.

- In the first step, we permuted the rows of E .
- In the second step we permuted its columns.

- In the third step, we permuted the observations within the diagonal cells of E .

Partial exchangeability implies that the distribution of E remains invariant
throughout all these steps.

In dyadic exchangeability the row-column permutations are coupled.
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Validity under partial exchangeability

Theorem

In the linear model, suppose that the errors are partially exchangeable. Then,

p4λxλε(1/#row clusters+ 1/#col clusters) = o(1).

are sufficient for asymptotic validity of residual randomization.

Notes:

- Leverage quantities are similar to clustered case, i.e., condition number of
X>X, max leverage ratio, and condition number of Vε.

- Again, the test allows for p → ∞.

- The test is valid (asymptotically) when both clusters grow.

- (Not shown above) Moreover, when one cluster size stays finite, then the test
can still be valid if we center the data of the other cluster.
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Simulation: Dyadic regression

The data generating model is defined as follows:

yi = β0 + β1|xr − xc|+ εi, εi = ηr + ηc + εrc, i = (r, c).

Simulation settings:

N row clusters, N column clusters.

εjj′ ∼ N(0, 1); and ηj ∼ N(0, 1) or ηj ∼ .5N(−1, .252) + .5N(1, .252), j = 1, . . . , N .

xj ∼ N(0, 1) or xj ∼ LN(0, 1), the standard log-normal distribution, j = 1, . . . , N .

N ∈ {10, 20, 35} so that n ∈ {45, 190, 595} (increases quadratically with N ).

(β0, β1) = (1, 1). We test H0 : β1 = 1 (true) and H0 : β1 = 1.3 (false).

Next table reports results over 40,000 replications on four methods:

(I) A HC2 robust error method as a strawman.

(II) A standard two-way clustered error method, implemented with function vcovCL from
the sandwich R package. In this method, we include dyad fixed effects.

(III) A linear mixed model with dyad RE through lmer in the lme4 R package.

(IV) The residual randomization test based on dyadic exchangeability.
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Panel (A). H0 : β1 = 1.0

Error-covariate, (εi, xi)

(N,N) (N, LN) (LN, N) (LN, LN)

Sample size, n

Method 45 190 595 45 190 595 45 190 595 45 190 595

(I) HC2 18.07 29.21 41.50 22.90 40.16 53.65 14.03 25.87 38.14 15.77 30.27 46.06

(II) 2-clust. 11.32 9.62 8.20 13.55 12.34 10.83 11.27 9.71 7.93 13.28 12.19 11.00

(III) RE 9.37 6.07 5.80 11.91 8.71 7.68 9.00 6.72 5.63 11.13 8.72 7.45

(IV) RR 5.11 4.63 5.09 5.00 5.09 4.91 4.89 5.17 5.04 4.85 4.94 4.97

Panel (B). H0 : β1 = 1.3

45 190 595 45 190 595 45 190 595 45 190 595

RE 25.57 67.05 98.12 25.46 49.68 84.51 28.61 70.11 98.24 29.12 55.20 85.70

RR 12.31 21.93 34.78 11.80 20.31 31.46 19.68 42.19 58.02 19.15 42.84 61.44

Table: Rejection rates (%) for HC2 errors, two-way cluster robust errors (“2-clust”), a random
effects (RE) model, and residual randomization (“RR-dyadic”) under dyadic exchangeability
using 2,500 resamples.
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Application: International trade and currency unions

Rose and Engel (2002) studied whether currency unions are associated with
increased economic integration. They work on a gravity model of trade:

log(TRADErc) = β0+β1CUrc+β2 log(GDPr)+β3 log(GDPc)+β4LANGrc+...+εrc.

In this context, Cameron and Miller (2014) discuss several standard error estimates:
regular OLS, HC, two-way clustered, and dyadic.

The standard errors increase as more structure is imposed, but their analysis
maintains the main result of Rose and Engel (2002) that β1 is positive and
significant.

(There is an important issue with missing data that remains unaddressed.)

Here, we can apply dyadic exchangeability along with other invariances as well.
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Specification/Model 95% CI for β1

Panel (A) estimate lower upper

(Rose and Engel, 2002)

OLS 1.054 (0.38) 0.300 1.808

OLS, centered X 1.038 (0.33) 0.392 1.684

(Cameron and Miller, 2014)

OLS, clustered by country 1 1.484 (0.28) 0.931 2.038

OLS, clustered by country 2 1.484 (0.62) 0.262 2.706

Panel (B)

Res. Randomization Invariant Filter

RR-perms. Gp
n {} 0.126 1.828

RR-signs Gs
n ∗ 0.139 1.955

RR-double Gp+s
n ∗ 0.076 1.941

RR-dyadic GP∗
n ∗ 0.0519 0.2660

∗ ∗ {continent} -0.0626 0.3617

∗ ∗ {language} -0.0814 0.2303

∗ ∗ {continent, language} -0.0438 0.1965

Table: Panel (A) reports OLS-based results. Panel (B) reports results from residual
randomization. The “filter” indicates that the dyadic permutation test uses only units sharing
the same value for the variables included in the filter.
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Concluding remarks

Statistical inference is possible under invariance assumptions.

Residual randomization offers a general implementation that leverages and
extends randomization theory. The same underlying procedure is employed
for any data structure (“plug-and-play”).

With this approach the problem structure dictates the analysis in a simple and
unified manner.

The resulting procedures are valid under weak conditions on the leverage of
(X, ε) while allowing for p → ∞ and heavy tailed data.

33 / 34



Thank You.

“Invariant Inference via Residual Randomization” (2022)
https://arxiv.org/pdf/1908.04218.pdf

“Introduction to Residual Randomization: The R Package RRI”
(Technical report, 2019)
https://cran.r-project.org/package=RRI

“Robust inference for high-dimensional linear models via residual randomization”
(with Wang et al, ICML 2021).

https://www.ptoulis.com/residual-randomization
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Example: Behrens-Fisher problem

Angrist and Pischke (2009) and Imbens and Kolesar (2016) studied the following

problem:

yi = β0 + β1di + εi,

where di is binary (treatment or control), and Var(εi) = diσ
2
1 + (1− di)σ

2
0 .

There are n1 =
∑

i di = 3 treated units, and n0 = 27 controls.

This is an instance of the Behrens–Fisher problem. Standard t-test does not work
here because σ2

0 , σ
2
1 are unknown.

No good methods available. Also, very small sample creates problems.

Here, an exact residual randomization test is possible!
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Example: Behrens-Fisher problem

Split units in three clusters, each cluster 1 treated unit and 9 controls:
(treated, control) = (1, 9), (1, 9), (1, 9).

1. Assume sign-symmetric errors across clusters.(standard assumption)

2. For every cluster c, X>
c Xc only depends on proportion of treated units in c,

which is the same for every c = 1, 2, 3, by construction!

So, X>
c Xc ∝ X>X as required.

The resulting randomization test is a cluster sign test with 3 clusters, and is exact.

(However, because of few clusters, minimum p-value is 1/8 = 0.125, and so we need to

randomize the test decision to bring it down to 0.05. Still valid, but loses power.)
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Panel (A). True β1 = 0.0

Error type, εi
normal t3 mixture

Control standard deviation, σ0
Method 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

BM 0.050 0.028 0.010 0.002 0.034 0.015 0.004 0.000 0.252 0.225 0.034 0.003

r-sign 0.095 0.012 0.000 0.000 0.067 0.012 0.001 0.000 0.213 0.010 0.001 0.000

r-exact 0.048 0.052 0.052 0.050 0.055 0.057 0.054 0.049 0.050 0.046 0.058 0.049

Panel (B). True β1 = 1.0

Method 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

BM 0.215 0.161 0.069 0.008 0.146 0.086 0.028 0.003 0.122 0.130 0.119 0.009

r-sign 0.448 0.149 0.007 0.000 0.270 0.065 0.003 0.000 0.214 0.122 0.004 0.000

r-exact 0.124 0.116 0.111 0.073 0.098 0.101 0.081 0.062 0.094 0.083 0.093 0.073

Panel (C). True β1 = 2.0

Method 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

BM 0.553 0.511 0.359 0.049 0.418 0.332 0.166 0.016 0.326 0.310 0.183 0.055

r-sign 0.899 0.632 0.090 0.000 0.655 0.290 0.032 0.000 0.978 0.673 0.070 0.001

r-exact 0.172 0.177 0.168 0.119 0.147 0.145 0.131 0.089 0.197 0.197 0.173 0.127

Table: Rejection rates of cluster sign test (r-sign), and exact randomization test (r-exact) for the
Behrens–Fisher problem. “BM” refers to an adjusted t-test proposed by Imbens and Kolesar
(2016) based on the bias correction method of McCaffrey and Bell (2002).

Back
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Missing data

Let µij = {0, 1} denote whether pair (i, j) is observed (µij = 1), and define
M = (µij) ∈ {0, 1}J×J .

Any dependence between M and the data generating mechanism could
significantly affect the results from statistical inference.

However, this issue is ignored by standard error methods. Moreover, the bootstrap
methods effectively consider M as a random variable, and impose on M the same
partial exchangeability structure as the observations. This is unrealistic because
missingness is usually dyad-specific; e.g., whether the trade flow between two
countries is missing or not may depend on their geographic and cultural affinity,
both of which are not partially exchangeable.

Under residual randomization, let P denote a clustering of N such that the trade
flow between any dyad (i, j) in the same cluster is observed. Suppose that

ε
d
= gε | X,M, for any g ∈ GP

n ⊆ Gn,M. (5)

Then, residual randomization is valid.

Back
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Extensions: High-dimensional regression

Consider the ridge estimator, β̂ridge. We can show that:

λ′β̂ridge − λ0 + µλ′P−1
µ β = λ′P−1

µ X>ε,

where Pµ = X>X + µI is the ridge matrix.

1. Thus, we can isolate the right term as our invariant:

tn(ε) = λ′P−1
µ X>ε,

2. and consider the left term as our test statistic,

Tn = λ′β̂ridge − λ0 + µλ′P−1
µ β̂

For β̂ we can either plug-in the ridge estimate or some LASSO estimate.

The rest of the procedure remains the same, and can handle (ostensibly) complex
error structures. See paper for detailed experiments.
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Autocorrelated errors

In panel data, the errors may be autocorrelated:

yt = x′
tβ + εt.

For example, we may have εt = ρtεt−1 + ut, where ut is iid noise, and ρt ∈ (0, 1)
may be non-stationary.

There are several “HAC” methods in the literature for such models (White et al,
1980; Andrews, 1991). Generally they are not robust as they are extensions of
“HC” methods with stronger assumptions.

Problems with heavy-tailed data, non-normality, and/or small samples.
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Which invariance works here?

Standard invariance concepts do not work here due to serial dependence.

However, for the AR(1) process:

εt
d
= −εt | {εt−1 = 0}.

The error series can be reflected around the time axis!
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t0 t1 t2

residual plot

t

We can reflect the residuals between the endpoints tj . Call this Gref
n .
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The “reflection” randomization test

1 Calculate the restricted residuals, ε̂r.

2 Order their absolute values, |ε̂r|, and select the J + 1 smallest values. Denote
the corresponding timepoints as t0, ..., tJ .

3 Define the clustering, {{t0, ..., t1}, {t1 + 1, ..., t2}, ..., {tJ−1 + 1, tJ}}.

4 Perform the cluster sign test based on the clustering from step 3.

+ Does not rely on normality.

+ Can work with non-stationary series.

+ Good empirical performance.
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Panel (A): ρ = 0.3

Error εt = ρεt−1 + ut, ut = ...

normal mixture

Covariates xt

iid autocorrelated iid autocorrelated

Method (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

OLS 0.052 0.054 0.073 0.078 0.053 0.050 0.073 0.071

HAC 0.066 0.112 0.065 0.112 0.066 0.145 0.070 0.130

reflection test, uncond. 0.031 0.030 0.034 0.034 0.045 0.048 0.042 0.042

reflection test, cond. 0.051 0.048 0.054 0.055 0.053 0.057 0.050 0.049

Panel (B): ρ = 0.8

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

OLS 0.048 0.048 0.341 0.339 0.049 0.050 0.336 0.346

HAC 0.050 0.087 0.104 0.128 0.053 0.097 0.102 0.141

reflection test, uncond. 0.022 0.023 0.024 0.027 0.031 0.029 0.032 0.030

reflection test, cond. 0.049 0.052 0.055 0.061 0.053 0.050 0.052 0.051

Table: Rejection rates for OLS, HAC errors, and the reflection test.
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