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Experiment and data

Units and treatment assignment

◦ 37,055 total streets (units)

◦ 967 streets are identified as crime “hotspots”

◦ 384 are treated with increased police presence

Outcomes and covariates

◦ Crime counts on all streets (murders, car and motorbike thefts,
personal robberies, assaults, aggregate crime score)

◦ Survey data on hotspot streets

◦ Characteristics of hotspots (distance from school, bus stop, rec
center, church, neighborhood, ...)
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Questions we aim to answer

How does the intervention affect crime?
∗ direct effect?
∗ spillovers to adjacent streets?

We will answer these through hypothesis testing.

We use the randomization mode of inference. It is robust and
model-free.
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The classical randomization test

Define observed data:
Z = (Z1, . . . ,ZN) as binary treatment assignment;
Y = (Y1, . . . ,YN) as vector of observed outcomes.

Potential outcome of unit i under assignment z : Yi (z).
i.e., total crime score

Assume no interference: Yi (z) depends only on zi .
⇒ Only two potential outcomes, Yi (0),Yi (1), for every i .

Does treatment have an effect?

H0 : Yi (0) = Yi (1), for every i .
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Fisher randomization test (1935)

H0 : Yi (0) = Yi (1), for every i .

The procedure:

Choose test statistic T = T (y , z) (e.g., difference in means).
1. T obs = T (Y ,Z ).

2. Sample Z
′ ∼ pr(Z

′
), store Tr = T (Y

′
,Z

′
)
H0= T (Y ,Z

′
).

3. p-value = E [1{Tr ≥ Tobs}].

Proof of validity:

T (Y
′
,Z

′
)
H0= T (Y ,Z

′
)
d
= T (Y ,Z ) = T obs

“T obs d
= T rand (under null)”
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Advantages of Fisherian randomization

◦ Exact. The test is valid in finite samples.

◦ Minimal assumptions. No model for Y . Regression analysis of
peer effects can be tricky (Angrist, 2014).

◦ Robust. Test gives the same answer with different
Y -scales (the same cannot be said for regression).

Possible limitation:

The test requires imputation from Y to any Y ′; i.e., H0 has to be a
sharp null.
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No interference assumption is too strong...

No interference is not realistic in our application.

We expect Yi (z) to depend on multiple components of zi .

We cannot write “Yi (0) = Yi (1)". There are more potential
outcomes.

One way to express more potential outcomes is through the
concept of treatment exposure.
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Treatment exposures

For any given Z , unit i is exposed to "something more" than Zi .
We assume the exposure is defined by a function:

fi : {0, 1}N → E .

E is the set of possible exposures (one neighboring street treated,
no neighboring streets treated, etc.)

Both E and fi need to be defined by the analyst. Any choice will
likely be contentious.

We can now ask questions in terms of exposures:

Is there a difference in outcome between short-range and
pure control streets?
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Question: Is there a short-range spillover effect?

H0 : Yi(Z ) = Yi(Z
′) for every i ,Z ,Z ′,

such that fi(Z ), fi(Z ′) ∈ {short, control}.

fi (Z ) :=


short-range Zi = 0, disti < 125m
control Zi = 0, disti > 500m
neither else

disti := distance to closest treated street.
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We cannot use the classical Fisher test

Recall: we need T obs d
= T rand for things to work.

T rand = T (Y
′
,Z

′
)�
�A
A
H0=T (Y ,Z

′
)
d
= T (Y ,Z ) = T obs.

The null only assumes 2 of the 3 exposures have equal outcomes

H0 : Yi (short) = Yi (control)
?
= Yi (neither), for every i.

Here, the null is not sharp. We cannot impute potential outcomes Y
′

freely under any Z
′ .

Fisherian randomization works only with sharp/global nulls.
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Testing Yi(short) = Yi(control), ∀i

Given a null hypothesis and assignment from pr(Z ), we know
which units are exposed to short or control using fi (·).

This is a binary relationship!
How can we visualize?
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Our main contribution: The null exposure graph
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Exposure control is navy

edge (i , j) denotes that unit i is
exposed to {short, control}
under assignment j .

Units Assignments
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Introducing the null exposure graph
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Notice that {{U2,U3}, {A2,A3}}
is a complete subgraph (biclique).

Units Assignments



Why are these bicliques useful?

Within a biclique, every unit is exposed to either short or control
under any assignment.

i.e.: If obs Z is in a biclique, we can impute potential outcomes,
H0 is sharp within the biclique.

Let’s outline the method ...
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Biclique method

Input:

∗A null exposure graph uniquely defined given H0.

∗ A test statistic T = T (y , z).

1. Decompose: Compute biclique decomposition of null
exposure graph. Pick out biclique with obs Z , say C .

2. Condition: Compute test statistic values with units and
assignments only in C .

3. Summarize: p-value = EZC
[1{TC ≥ Tobs}].

Here, P(ZC ) ∝ pr(ZC )1{ZC ∈ C}
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Why is this a valid method?

Clique test statistics: TC = T (YC ,ZC )

?T is defined only in C by step 2.

For every Z ,Z
′
, we need to show T (Y

′
,Z

′
)
d
= T (Y ,Z ) | C

Proof:

T (Y
′
,Z

′
)
?
= T (Y

′
C ,Z

′
C )

H0= T (YC ,Z
′
C )

d
= T (YC ,ZC )

?
= T (Y ,Z ).
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Considerations

◦ Finding bicliques is NP-hard1

◦ Our method could be optimized;

i.e., different biclique decompositions will have different power
properties, but all are valid!

◦ Other conditional testing methods:
Aronow 2012, Athey et al. 2018. (Roughly) equivalent to randomly
sampling units one one side, then computing the clique that
contains those units and obs Z .
⇒ loses power.
Basse et al. 2019. Biclique sampling can depend on obs Z .
⇒ easier when interference has structure.

1We use Binary Inclusion-Maximal Biclustering Algorithm, which uses a
divide and conquer method to find bicliques. 20



Returning to the map
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The observed assignment
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The observed assignment

23

Zobs

384 streets are
treated with
increased police
patrolling

Q: Does crime after
treatment differ between
nearby and far away
streets?



Short-range spillover units (exposure “short”)
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Pure control units (exposure “control”)
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We can remake these pictures for every assignment Z drawn
from pr(Z) ...

→ The output is our null exposure graph!
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Null exposure graph
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navy, light blue,
and white



Biclique containing the observed assignment
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only navy and
light blue!



Where are the clique units?
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A test of the null
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p-value ∼= 0.07



Concluding thoughts

◦ New method is presented for testing causal effects under
general interference using null exposure graphs and bicliques.

◦ Structure is placed on null hypothesis through exposure
functions.

◦ Future work: understand power properties; optimized biclique
decomposition; more hypotheses.
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Thank You!

Athey, Eckles, Imbens, "Exact p-Values for Network Interference" (JASA,
2018)

Basse, Feller, Toulis, "Randomization tests of causal effects under
interference" (Biometrika, 2019)

Aronow, "A general method for detecting interference between units in
randomized experiments." (Sociol. Methods Res., 2012)
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