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Introduction

We consider the problem of inference in observational studies in which units

adopt treatment at varying times.

Problems of this type relate to panel data and widely used methods, such as

difference-in-differences (Snow, 1855; Card and Krueger, 1993) and synthetic

controls (Abadie and Gardeazabal, 2003; Abadie et al., 2010; Abadie, 2019).

The majority of these methods rely on specification of the outcome model;

see Abadie and Cattaneo (2018).

We propose a method that exploits only variation in treatment adoption (i.e.,

design-based). The method relies on randomization tests and is robust.
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Contributions

In contrast to earlier literature, our method exploits the availability of

multiple units that adopt treatment at different times.

We make a novel connection between such settings and survival analysis in

statistics.

We develop a randomization test for the null hypothesis of no treatment

effect for all units and time periods. We prove that our test is valid

asymptotically when the treatment model satisfies the proportional hazards

condition.

Our test can be robust to misspecification of the treatment model under

certain symmetry assumptions on the test statistic (reminiscent of “doubly

robust” methods).
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Setup

Unit indexed by i = 1, . . . , n and time indexed by t ∈ [0,∞). Observations
are censored at tmax.

Ti = time at which unit i adopts treatment (at most once).
[Ti not observed if Ti > tmax.]

Xit = covariates of unit i observed at times t = 1, . . . , tmax.

Yit(r) = potential outcome of unit i at times t = 1, . . . , tmax under Ti = r.
[X,Y observed at “lower frequency” than T ; see obs. frequencies . ]

Observed outcomes therefore satisfy:

Yit = Yit(Ti). (1)

Shorthand notation: X = {Xit : i, t}, Y = {Yit : i, t} and T = {Ti : i}.
Also, Y = {Yit(r) : r, i, t} denotes the full schedule of potential outcomes.
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Goal

We want to test the “no effect” hypothesis:

H0 : Yit(r) = Yit(r
′), for all r, r′ ∈ [0,∞), i = 1, . . . , N, t = 1, . . . , tmax.

We make an unconfoundedness assumption on Y:

Y ⊥⊥ T | X. (A1)

Under H0 and (A1), focus shifts to p(T | X) — the “propensity score”.

Knowledge of p(.) immediately leads to a valid randomization test based on the
p-value:

pval = E
{
Sn(T

′;Y ,X) ≥ Sobs | Y ,X
}
, T ′ ∼ p(T ′ | X),

where Sobs = Sn(T ;Y ,X) is the observed value of the test statistic.
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Illustration — Tobacco legislation of Abadie et al. (2010)

The “synthetic control” method of Abadie et al (2010) constructs synthetic data

predicting the outcomes for the treated had the unit been in control.

Inference was based on randomizing the identity of the first treated unit (I1).

This assumes that p(T | X) is uniform, which is unrealistic in many settings.
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Illustration — Tobacco legislation of Abadie et al. (2010)

In general, the randomization test needs to shuffle the red lines along the time

axis according to a plausible p(T | X).

So, what can we say about p(T | X)? (generally unknown)
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Model for p(T | X) — Connection to survival analysis

Natural connection to event data models and survival analysis.

[Ti < tmax = event, Ti = event time].

One of the most widely used event models relies on proportional hazards.

This is a design-based approach to inference: Exploit only variation in T .
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Proportional hazards

Assume:

(a) T1, . . . , Tn are independent conditional on X.

(b*) Ti depends only on Xi = {Xit : t = 1, . . . , tmax}. [despite different observation
frequencies].

(c) Ti | Xi has density such that

lim
δ→0

P{Ti ∈ [t, t+ δ] | Ti ≥ t,Xi} = λ(t) exp(X ′
itβ). (2)

Here, β ∈ Rd are fixed parameters; λ(t) is the baseline hazard rate. This rate
may be unknown.

The key restriction of (2) is that the hazard rate of an event at t is decomposed
between a temporal term and covariate term. May fail if these two terms actually

interact.

Eq. (2) leads to the celebrated Cox proportional hazards model.
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Cox proportional hazards model

Under PH, we obtain the partial likelihood:

L(β) =

n∏
i=1

(
exp(X ′

iTi
β)∑

j∈Ri
exp(X ′

jTi
β)

)1−δi

. (3)

δi = 1(Ti > tmax) indicates censorship.

Ri = {j : Tj ≥ Ti} is the risk set at Ti (units “competing” with i for an event
at Ti).

We will assume that the maximand of (3) leads to a consistent estimator of β:

β̂n
p→ β. (A2)

Sufficient conditions can be found in many standard textbooks; e.g., (Andersen

and Gill, 1982).
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Our approach

As Abadie et al (2010), we condition on T(1) = mini Ti, the first treatment event.

Let I1 = argmini Ti be the first treated unit.

This is useful because under H0 and (A1), we have:

Y ⊥⊥ I1 | T(1),X.

Moreover,

P (I1 = i | T(1),X) =
exp(X ′

iT(1)
β)∑n

j=1 exp(X
′
jT(1)

β)
, ωi(β).

We can then randomize the identity of the first treated unit conditional on T(1):

pval =
n∑

i=1

ωi(β)1{Sn(i, T(1);Y ,X) ≥ Sobs | T(1),Y ,X}

leads to an (infeasible) exact test.
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Concrete procedure

(1) Using (X,Y ), fit Cox proportional hazards model and get β̂n.

(2) Calculate weights ωi(β̂n).

(4) Define a test statistic to depend on T only through I1, T(1).

(3) Calculate the p-value:

pval =
∑
i

ωi(β̂n)1{Sn(i, T(1);Y ,X) ≥ Sobs | T(1),Y ,X}.

Theorem

Under PH and (A1) and (A2), the above procedure implies an asymptotically

valid test for H0.

Notes:

First known result on validity of randomization tests under estimated propensity score.

The PH assumption is testable; e.g., (Xue and Schifano, 2017).

When ωi = 1/n, we obtain a “uniform test”, which is equivalent to the procedure employed
in (Abadie et al., 2010) for synthetic controls.

Downside: We “throw away” information from other treatments. Could we condition on

multiple treatment events . ?
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Simulation

Treatment model:

Xi ∼ U(−10, 10), Xit = Xi,

Ti|Xi ∼ Exp(λi), λi = exp(Xiβ), β = 1. (4)

Outcome model:

Ỹit(0) = ρỸi,t−1(0) + δ
√
t+ γXi + εit

Ỹit(1) = τ + Ỹit(0).

The full schedule of potential outcomes, Y = {Yit(r) : r, i, t} depends only on
whether treatment has been adopted at t, such that

Yit(r) = Ỹit(0) + 1(r ≤ t)(Ỹit(1)− Ỹi,t(0)). (5)

We set εit ∼ N(0, σ2). Assumptions (A1) and (A2) satisfied.

PH assumption satisfied.
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For simplicity, we use the “diff-in-diff” test statistic:

Sn = Avgt≥T(1)
[YI1t − Avgj 6=I1

(Yjt)]− Avgt<T(1)
(YI1t − Avgj 6=I1

(Yjt)].

Under the particular model assumptions (and H0 : τ = 0):

Sn ∝ γ(X̄ −XI1) + ηI1 − g(η), (6)

where η ∈ Rn depends only on εit, and is exchangeable normal r.v.

Eq. (6) shows how p(I1 | T(1),X) affects the randomization distribution of Sn, as

long as γ 6= 0.

We consider three different randomization tests:

(1) “uniform” test: We use p(I1| . . .) ∝ const. [misspecified]

(2) “infeasible” test: We use correct p(I1| . . .) based on true Cox model.

(3) “feasible” test: We use estimated p(I1| . . .) from true Cox model.
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n γ uniform feasible infeasible

25 0.00 4.96 5.11 5.00

0.50 14.26 4.62 4.97

1.00 17.06 4.48 5.02

2.00 18.32 4.46 5.06

5.00 19.40 4.46 5.07

50 0.00 5.10 5.03 5.11

0.50 14.30 4.82 4.98

1.00 17.07 4.77 4.95

2.00 19.22 4.58 4.91

5.00 20.73 4.77 5.04

100 0.00 4.88 5.07 5.00

0.50 14.01 4.85 4.99

1.00 17.12 4.79 5.06

2.00 19.71 4.85 4.95

5.00 21.00 4.79 5.11

Table: Rejection rates (%) of ‘uniform’, ‘feasible’ and ‘infeasible’ tests under H0.

Power . Choice of test statistic .
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Misspecification

Theorem

Let Pn,i = P(reject H0 | i is treated). Suppose there exists a sequence
jn ∈ {1, . . . , n} such that, under H0,

δjn(T ,X) = max
i

|Pn,i − Pn,jn | = o(1). (7)

Then, our test is valid asymptotically even when PH does not hold.

Sufficient conditions for (7) include a form of exchangeability of the test statistic

wrt to i under H0 (see paper).

So, our test is valid (asymptotically) when

(a) the Cox treatment model is well-specified, or

(b) when the treatment model is misspecified but the test statistic can be

appropriately constructed (e.g., through knowledge of the outcome model).

Reminiscent of doubly robust methods.
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Simulation under misspecification

We use a different specification for the treatment (known as “accelerated

failure”):

Ti = exp(−m(Xi) + εi) , (8)

where m(x) = 1− logistic(2k1(x+ 8)) + logistic(2k2(x− 8)), εi ∼ N(0, 0.42).

We can control misspecification through (k1, k2):

If (k1, k2) = (0, 0), then PH holds. [moreover, Ti are i.i.d.]

If (k1, k2) = (large, small) or (small, large), PH does not hold but

misspecification is not too severe.

If (k1, k2) = (large, large), then misspecification is severe.
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n = 25 n = 50

k1 k2 γ uniform feasible (Cox) uniform feasible

0.00 0.00 0.00 5.10 5.08 5.01 4.98

0.00 0.00 2.00 4.99 4.77 5.01 4.99

0.00 0.00 5.00 4.93 4.40 4.94 4.69

2.00 0.00 0.00 5.03 3.28 5.10 3.36

2.00 0.00 2.00 8.32 4.57 10.25 4.93

2.00 0.00 5.00 13.98 6.85 17.63 7.98

1.00 1.00 0.00 5.04 4.51 4.98 4.58

1.00 1.00 2.00 8.42 7.57 9.98 9.62

1.00 1.00 5.00 14.51 13.50 17.62 17.61

0.00 2.00 0.00 4.99 3.40 5.04 3.36

0.00 2.00 2.00 8.40 4.48 10.28 4.81

0.00 2.00 5.00 13.63 6.78 17.57 7.93

2.00 2.00 0.00 4.98 4.45 4.94 4.57

2.00 2.00 2.00 8.59 7.91 10.48 10.18

2.00 2.00 5.00 14.62 13.89 17.81 17.79

Table: Rejection rates (%) of ‘uniform’, ‘feasible’ and ‘infeasible’ tests under H0, i.e., when
τ = 0, and under misspecification.
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“Robustified” test statistic

Recall that the diff-in-diff test statistic was equivalent to:

Sn = γ(X̄ −XI1) + ηI1 − g(η),

So, we can use a covariate-adjusted test statistic:

SR
n = Sn − γ(X̄ −XI1).

Thus, SR
n = ηI1 − g(η). Since η is exchangeable, knowing the correct

distribution of I1 is not necessary for a valid test.

Of course, this test is infeasible because γ is unknown. We therefore also

consider:

SR,f
n = Sn − γ̂n(X̄ −XI1).
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SR,f
n SR

n

n k1 k2 γ uniform feasible (Cox) uniform feasible

50 0.00 0.00 0.00 4.93 4.92 4.99 5.00

0.00 0.00 2.00 5.02 4.98 5.04 5.01

0.00 0.00 5.00 4.96 4.99 5.04 5.02

2.00 0.00 0.00 5.14 3.25 5.02 3.32

2.00 0.00 2.00 4.99 3.30 4.90 3.27

2.00 0.00 5.00 4.98 3.30 4.97 3.18

1.00 1.00 0.00 5.26 4.88 5.04 4.62

1.00 1.00 2.00 5.04 4.64 5.02 4.72

1.00 1.00 5.00 5.08 4.68 4.97 4.64

0.00 2.00 0.00 5.19 3.27 4.93 3.25

0.00 2.00 2.00 5.07 3.43 5.03 3.33

0.00 2.00 5.00 4.98 3.32 4.88 3.18

2.00 2.00 0.00 5.11 4.71 4.99 4.52

2.00 2.00 2.00 4.98 4.66 5.12 4.68

2.00 2.00 5.00 5.14 4.68 4.90 4.52

Table: Rejection rates (%) of ‘uniform’, ‘feasible’ and ‘infeasible’ tests under H0, i.e., when
τ = 0, and with test statistics defined in (9) and (9) under misspecification of the treatment
adoption model.
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Application: Tobacco data

Here, we re-analyze the tobacco legislation example in (Abadie et al., 2010).

We index time by t ∈ {"01/1971", "02/1971", . . . , "12/2014"}, where we have
adopted the “month/year” format and identify 1 with "01/1971" and tmax with
"12/2014".

Yi,t = the number of cigarette packets sold in state i at time t.

Ti = time at which state i adopts tobacco tax legislation.∗
Xit = { log-income/capita, average price levels, %youth population,

%unemployment level, %Democratic legislature }.

∗ Orzechowski and Walker (2014) provide a comprehensive record of tobacco

tax increases across states during this time period. We define treatment to be

the first time taxes on cigarette packets are increased by at least 50% of current

packet value.

Every state except Missouri adopts tobacco legislation in our sample period.

For robustness, we consider multiple alternative specifications.

See Definitions of treatment .
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Treatment adoption probabilities

State Prob. State Prob. State Prob.

Nevada 0.1037 Arkansas 0.0250 Virginia 0.0086
Connecticut 0.1018 Pennsylvania 0.0225 Alabama 0.0081
Rhode Island 0.0681 Louisiana 0.0201 West Virginia 0.0066
North Dakota 0.0617 Ohio 0.0200 Oklahoma 0.0037
Maine 0.0605 Delaware 0.0186 South Carolina 0.0033
Illinois 0.0580 Minnesota 0.0171 South Dakota 0.0027
Wisconsin 0.0517 Tennessee 0.0163 Vermont 0.0026
Texas 0.0491 Montana 0.0151 Utah 0.0023
Nebraska 0.0460 Idaho 0.0139 Iowa 0.0018
California 0.0440 Indiana 0.0134 North Carolina 0.0016
New Hampshire 0.0360 Kansas 0.0124 Missouri 0.0014
Wyoming 0.0291 Georgia 0.0124 Kentucky 0.0013
New Mexico 0.0279 Colorado 0.0111 Mississippi 0.0006

Table: Estimated conditional distribution of the identity of the state that first adopted

tobacco legislation, i.e., the distribution of I1|T(1), X
(n).

p-value = 0.044. Noticeably larger than 0.026 reported by Abadie et al. (2010),
but still significant at 5%.
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Robustness — Multiple specifications

Overall, we find 9 states with two possible Ti specifications each.

With 6 covariates, there are 26 = 64 possible Cox models to consider.

In total, there are 29 × 26 = 32, 768 possible specifications. As a robustness
check, we report the (p-value, AIC) for each one of these specifications.
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Observation times and Observation frequency

In general, Xit, Yit and Ti can be observed at different “observation

frequencies”.

Motivated by our application and real data limitations, we assume that

� Xit, Yit have the same observation frequency, denoted as t = 1, . . . , tmax.

� Ti are observed at a higher frequency — e.g., month/year vs. only year for
Xit, Yit.

� There are no ties, Ti 6= Tj w.p.1.

(Notation): Thus, “XiTi ” is the value of X at time Ti modulo the observation

frequency of X [e.g., log-GDP of state i at the year implied by Ti.]

Back .
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It is natural to consider tests that condition not just on T(1), but T(1) and T(2),

where T(2) is the second-order statistic of T1, . . . , Tn.

It is possible to see that P{I1 = i, I2 = j|T(1), T(2), X
(n)} depends not only on

(Xi,t : i ∈ N, t ∈ {T(1), T(2)}), but also on the integral of λ(t) exp(X ′
i,tβ) over

T(1) ≤ t ≤ T(2).

For this reason, we do not pursue such tests further in this paper.

Back .
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τ = 0.25 τ = 0.5
n γ feasible infeasible feasible infeasible

25 0.00 19.18 19.32 24.05 24.17

0.50 15.01 14.89 20.35 20.34

1.00 11.48 11.91 16.38 16.77

2.00 8.68 9.20 12.43 12.67

5.00 6.00 6.56 7.96 8.56

50 0.00 32.05 31.99 38.80 38.47

0.50 26.98 26.93 34.90 35.28

1.00 21.96 22.07 30.73 30.91

2.00 16.71 16.59 24.50 24.55

5.00 10.10 10.43 15.81 16.01

100 0.00 48.00 48.34 58.94 58.89

0.50 42.09 42.48 54.90 54.90

1.00 36.11 36.25 49.49 49.58

2.00 27.63 27.70 41.48 41.51

5.00 16.80 17.12 27.88 28.28

Table: Rejection rates (%) of ‘feasible’ and ‘infeasible’ tests of (??) under the alternative
hypothesis, i.e., when τ = 0.25 or τ = 0.50.

Back .
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Choice of Sn

While our theory applies to any choice of test statistic Sn, some choices of test

statistics may be preferable in terms of power.

Abadie et al. (2010) suggest, for example, a test statistic of the form∑
t≥T(1)

(YI1,t − ŶI1,t)
2∑

t<T(1)
(YI1,t − ŶI1,t)

2
, (9)

where ŶI1,t is the “synthetic control”. See Section 2 of Cattaneo et al. (2019) for

a succinct summary of that choice and variations by Abadie et al. (2010), Hsiao

et al. (2012), Doudchenko and Imbens (2016), Chernozhukov et al. (2018),

Ferman and Pinto (2019), Arkhangelsky et al. (2019), and Abadie and L’Hour

(2017), Amjad et al. (2018), Athey et al. (2018) and Ben-Michael et al. (2019),

for more extensions.

Other options for Sn include diff-in-diff and t-test statistic. See (Firpo and
Possebom, 2018) for numerical experiments in power.

Back .
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State Specification A Specification B

1 Alabama 05/2004 05/2004

2 Arkansas 06/2003 02/1993

3 California 01/1989 01/1989

4 Colorado 01/2005 01/2005

5 Connecticut 04/1989 04/1989

6 Delaware 01/1991 08/2003

7 Georgia 07/2003 07/2003

8 Idaho 07/1994 06/2003

9 Illinois 07/1989 07/1989

10 Indiana 07/2002 07/2002

11 Iowa 04/2007 04/2007

12 Kansas 07/2002 07/2002

13 Kentucky 06/2005 06/2005

14 Louisiana 08/2002 08/2002

15 Maine 11/1997 07/1991

16 Minnesota 06/1991 08/2005

17 Mississippi 05/2009 05/2009

18 Missouri 12/2014 12/2014

19 Montana 05/2003 05/2003

20 Nebraska 10/2002 10/2002

21 Nevada 07/1989 07/1989

22 New Hampshire 02/1990 02/1990

23 New Mexico 07/2003 07/2003

24 North Carolina 09/2005 09/2005

25 North Dakota 05/1989 05/1989

26 Ohio 07/2002 07/2002

27 Oklahoma 01/2005 01/2005

28 Pennsylvania 08/1991 08/1991

29 Rhode Island 07/1997 07/1993

30 South Carolina 07/2010 07/2010

31 South Dakota 03/2003 07/1995

32 Tennessee 07/2002 07/2002

33 Texas 07/1990 07/1990

34 Utah 07/1991 07/1997

35 Vermont 07/1995 07/1995

36 Virginia 09/2004 09/2004

37 West Virginia 05/2003 05/2003

38 Wisconsin 05/1992 05/1992

39 Wyoming 07/2003 07/1989

Back .
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