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a b s t r a c t

We propose a partial identification method for estimating disease prevalence from
serology studies. Our data are results from antibody tests in some population sample,
where the test parameters, such as the true/false positive rates, are unknown. Our
method scans the entire parameter space, and rejects parameter values using the joint
data density as the test statistic. The proposed method is conservative for marginal
inference, in general, but its key advantage over more standard approaches is that
it is valid in finite samples even when the underlying model is not point identified.
Moreover, our method requires only independence of serology test results, and does
not rely on asymptotic arguments, normality assumptions, or other approximations.
We use recent Covid-19 serology studies in the US, and show that the parameter
confidence set is generally wide, and cannot support definite conclusions. Specifically,
recent serology studies from California suggest a prevalence anywhere in the range 0%-
2% (at the time of study), and are therefore inconclusive. However, this range could
be narrowed down to 0.7%–1.5% if the actual false positive rate of the antibody test
was indeed near its empirical estimate (∼0.5%). In another study from New York state,
Covid-19 prevalence is confidently estimated in the range 13%–17% in mid-April of 2020,
which also suggests significant geographic variation in Covid-19 exposure across the US.
Combining all datasets yields a 5%–8% prevalence range. Our results overall suggest that
serology testing on a massive scale can give crucial information for future policy design,
even when such tests are imperfect and their parameters unknown.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Since December 2019 the world has been facing the Covid-19 pandemic, and its disastrous effects in human life and
he economy. Responding to the pandemic, most countries have closed off their borders, and imposed unprecedented,
niversal lockdowns on their entire economies. The key reason for such drastic measures is uncertainty: we do not yet
now the actual transmission rate, the lethality, or the prevalence of this new deadly disease. As governments and policy
akers were caught by surprise, there is no doubt that these drastic measures were needed as a first line of defense. The
ata show that we would have to deal with a massive humanitarian disaster otherwise.
At the same time, as the economic pain mounts, especially for the most vulnerable and disadvantaged segments of the

opulation, there is an urgent need to think of careful ways to safely reopen the economy. Estimating the true prevalence
f Covid-19 has been identified as a key parameter to this effort (Alvarez et al., 2020). In the United States, the number
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f confirmed Covid-19 cases is 1,193,813 as of May 7 with 70,802 total deaths. This implies a (case) prevalence of 0.36%
assuming 3.28m as the US population), and a 5.9% mortality rate of Covid-19, which is even higher than the mortality
ate reported at times by the World Health Organization.2 However, the true prevalence, that is, the number of people
ho are currently infected or have been infected by Covid-19 over the entire population is likely much higher, and so
he mortality rate should be significantly lower than 5.9%. A growing literature is attempting to estimate these numbers
hrough epidemiological models (Li et al., 2020; Flaxman et al., 2020), or structural assumptions (Hortaçsu et al., 2020).

A more robust alternative seems to be possible through randomized serological studies that detect marker antibodies
ndicating exposure to Covid-19. In the US, there is currently a massive coordinated effort to evaluate the widespread
pplication of these tests. The results are expected in late May of 2020.3 The hope is that these tests will determine the
rue prevalence of the virus, and thus its lethality, and also determine whether someone is immune enough to return
o work (the extent of immunity is still uncertain, however). Furthermore, seroprevalence studies can give information
n risk factors for the disease, such as a patient’s age, location, or underlying health conditions. They may also reveal
mportant medical information on immune responses to the virus, such as how long antibodies last in people’s bodies
ollowing infection, and could also identify those able to donate blood plasma, which is a possible treatment to seriously
ll Covid-19 patients.4 The development of serology tests is therefore essential to designing a careful strategy towards
oth effective medical treatments and a gradual reopening of the economy.
Until widespread serology testing is possible, however, we have to rely on a limited number of serology studies that

ave started to emerge in various areas of the globe, including the US. Table 1 presents a non-exhaustive summary of such
tudies around the world. For example, in Germany, serology tests in early April showed a 14% prevalence in a sample
f 500 people.5 In the Netherlands, a study in mid-April showed a lower prevalence at 3.5% in a small sample of blood
onors.6 7 In the US, in a recent and relatively large study in Santa Clara, California, Bendavid et al. (2020) estimated an
n-sample prevalence of 1.5% from 50 positive test results in a sample of 3330 patients. Using a reweighing technique, the
uthors extrapolated this estimate to 2%–4% prevalence in the general population. A follow-up study in LA County found
5 positives out of 846 tests. What is unique about these last two studies is that data from a prior validation study are also
vailable, where, say, 401 ‘‘true negatives’’ were tested with 2 positive results, implying a false positive rate of 0.5%. Upon
ublication, these studies received intense criticism because the false positive rate appears to be large enough compared
o the underlying disease prevalence. For example, the Agresti–Coull and Clopper–Pearson 95% confidence intervals for
he false positive rate are [0.014%, 1.92%] and [0.06%, 1.79%], respectively. These intervals for the false positive rate are
ot incompatible even with a 0% prevalence, since a 1.5% false positive rate achieves 0.015 × 3330 ≈ 50 (false) positives

on average, same as the observed value in the sample.
Such standard methods, however, are justified based on approximations, asymptotic arguments, prior specifications

(for Bayesian methods), or normality assumptions, which are always suspect in small samples. In this paper, we develop a
method that can assess finite-sample statistical significance in a robust way. The key idea is to treat all unknown quantities
as parameters, and explore the entire parameter space to assess agreement with the observed data. Our method adopts
the partial identification framework, where the goal is not to produce point estimates, but to identify sets of plausible
parameter values (Wooldridge and Imbens, 2007; Tamer, 2010; Chernozhukov et al., 2007; Manski, 2003, 2010, 2007;
Romano and Shaikh, 2008, 2010; Honoré and Tamer, 2006; Imbens and Manski, 2004; Beresteanu et al., 2012; Stoye,
2009; Kaido et al., 2019). Within that literature, our proposed method appears to be unique in the sense that it constructs
a procedure that is valid in finite samples given the correct distribution of the test statistic. Importantly, the choice of the
test statistic can affect only the power of our method, but not its validity. Such flexibility may be especially valuable in
choosing a test statistic that is both powerful and easy to compute. Thus, the main benefit of our approach is that it is
valid with enough computation, whereas more standard methods are only valid with enough samples.

The rest of this paper is structured as follows. In Section 2 we describe the problem formally. In Section 3.1 we describe
the proposed method on a high level. A more detailed analysis along with a modicum of theory is given in Section 3.2.
In Section 4 we apply the proposed method on data from the Santa Clara study, the LA County study, and a recent study
from New York state.

2. Problem setup

Here, we formalize the statistical problem of estimating disease prevalence through imperfect medical tests. Every
individual i is associated with a binary status xi: it is xi = 1 if the individual has developed antibodies from exposure to

2 The official mortality rate was revised from 2% in late January to 4% in early March; see also an official WHO situation report from early March:
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_2.
3 CDC page: https://www.cdc.gov/coronavirus/2019-ncov/lab/serology-testing.html.
4 Food and Drug Administration (FDA) announcement on serology studies (04/07/2020): https://www.fda.gov/news-events/press-announcements/

coronavirus-covid-19-update-serological-tests.
5 Report in German: https://www.land.nrw/sites/default/files/asset/document/zwischenergebnis_covid19_case_study_gangelt_0.pdf.
6 Presentation slides in Dutch: https://www.tweedekamer.nl/sites/default/files/atoms/files/tb_jaap_van_dissel_1604_1.pdf.
7 See also a summary of these projects in the journal ‘‘Science’’: https://www.sciencemag.org/news/2020/04/antibody-surveys-suggesting-vast-

undercount-coronavirus-infections-may-be-unreliable.
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able 1
ummary of recent Covid-19 prevalence studies crudely categorized as either statistical models or medical tests (PCR or serology). Most studies
eport intervals, but here we mainly report midpoints. Top panel: PCR stands for ‘‘polymerase chain reaction‘‘, and is a key test to detect presence
of the virus’ RNA; serology denotes a serology test to detect presence of antibodies (e.g., IgA, IgM, IgG). ILI stands for ‘‘influenza-like illness’’ and
escribes methods that use data recorded from patients with general influenza-like symptoms, including but not limited to Covid-19 cases. Bottom
anel: Studies that aimed mainly to estimate percentage of Covid-19 cases that are not reported. This number can be used to calculate prevalence
stimates, but needs to be adjusted for the exact timeframe of the study; e.g., the analysis of Hortaçsu et al. (2020) implies a 1.5–2.5% prevalence
n Santa Clara county in mid-March.
Prevalence Location Time Method Notes

6.14% China 01/21 PCR Sample of 342 pneumonia patients (Liang et al., 2020).
2.6% Italy 02/21 PCR Used 80% of entire population in Vó, Italy (Lavezzo et al., 2020).
5.3% USA 03/12 PCR Used 131 patients with ILI symptoms (Spellberg et al., 2020).
13.7% USA 03/22 PCR Sample of 215 pregnant women in NYC (Sutton et al., 2020).
0.34% USA 03/17 Model (Yadlowsky et al., 2020).
9.4% Spain 03/28 Serology Sample of 578 healthcare workers (Garcia-Basteiro et al., 2020).
3% Japan 03/31 Serology Random set of 1000 blood samples in Kobe Hospital (Doi et al., 2020).
36% USA 04/02 PCR Study in large homeless shelter in Boston (Baggett et al., 2020).
1.5% USA 04/03 Serology Recruited 3330 people via Facebook (Bendavid et al., 2020).
2.5% USA 04/04 Model Uses ILINet data; implies 96% unreported cases (Lu et al., 2020).
9.1% Switzerland 04/06 Serology Sample of 1335 individuals in Geneva (Stringhini et al., 2020).
14% Germany 04/09 Serology Self-reported 400 households in Gangelt. (Streeck et al., 2020).
3.1% Netherlands 04/16 Antigen Used 3% of all blood donors. (van Dissel, 2020).
0.4%–40% USA 04/24 Model Partial identification using #cases/deaths (Manski and Molinari, 2020).

Unreported

90% USA 03/16 Model Used airflight data to identify transmission rates (Hortaçsu et al., 2020).
85% India 04/02 Model Extrapolated from respiratory-related cases (Venkatesan, 2020).

the disease, and xi = 0 if not. We will also refer to these cases as ‘‘positive’’ and ‘‘negative’’, respectively. Patient status is
ot directly observed, but can be estimated with a serology (antibody) test.
This medical antibody test can be represented by a function t : {0, 1} → {0, 1}, and determines whether someone is

positive or negative. As usual, the categorization of the test results can be described through the following table:

True status, x =

0 1

t(x) =
0 True negative False negative
1 False positive True positive

We will assume that each test result is an independent random outcome, such that the true positive rate and false positive
rate, denoted respectively by q and p,8 are constant:

P {t(x) = 1|x = 1} = q, (A1)

P {t(x) = 1|x = 0} = p. (A2)

This assumption may be untenable in practice. In general, patient characteristics, or test target and delivery conditions
can affect the test results. For example, Bendavid et al. (2020) report slightly different test performance characteristics
depending on which antibody (either IgM or IgG) was being detected. We note, however, that this assumption is not
strictly necessary for the validity of our proposed inference procedure. It is only useful in order to obtain a precise
calculation for the distribution of the test statistic (see Theorem 1 and remarks).

To determine test performance characteristics, and gain information about the true/false positive rates of the antibody
test, there is usually a validation study where the underlying status of participating individuals is known. In the Covid-19
case, for example, such validation study could include pre-Covid-19 blood samples that have been preserved, and are thus
‘‘true negatives’’. To simplify, we assume that in the validation study there is a set I−

c of participating individuals, where
it is known that everyone is a true negative, and a set I+

c where everyone is positive; i.e.,

xi = 0, for all i ∈ I−

c , and xi = 1, for all i ∈ I+

c .

There is also the main study with a set Im of participating individuals, where the true status is not known. We assume
no overlap between sets I−

c , I
+
c and Im, which is a realistic assumption. We define N−

c = |I−
c | and N+

c = |I+
c | as the

respective number of participants in the validation study, and Nm = |Im| as the number of participants in the main study.
These numbers are observed, but the full patient sets or the patient characteristics, may not be observed.

8 The terms ‘‘sensitivity’’ and ‘‘specificity’’ are frequently used in practice of medical testing. In our setting, sensitivity maps to the true positive
rate (q), and specificity maps to one minus the false positive rate (1− p). In this paper, we will only use the terms ‘‘true/false positive rate’’ as they
re more precise and self-explanatory.
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We also observe the positive test results in both studies:

S−

c =

∑
i∈I−

c

t(xi), S+

c =

∑
i∈I+

c

t(xi), [Calibration study]

Sm =

∑
i∈Im

t(xi). [Main study] (1)

hus, S−
c is the number of false positives in the validation study since we know that all individuals in I−

c are true negatives.
imilarly, S+

c is the number of true positives in the validation study since all individuals in I+
c are known to be positive.

hese numbers offer some simple estimates of the false positive rate and true positive rate of the medical test, respectively:
ˆ = S−

c /N
−
c and q̂ = S+

c /N
+
c . We use (s−c,obs, s

+

c,obs, sm,obs) to denote the observed values of test positives (S−
c , S

+
c , Sm),

espectively, which are integer-valued random variables.
The statistical task is therefore to use observed data {(N−

c ,N
+
c ,Nm), (s−c,obs, s

+

c,obs, sm,obs)} and do inference on the
quantity:

π =

∑
i∈Im

xi
Nm

, (2)

i.e., the unknown disease prevalence in the main study. We emphasize that π is a finite-population estimand — we discuss
briefly) the issue of extrapolation to the general population in Section 5. The challenge here is that Sm generally includes
both false positives and true positives, which depends on the unknown test parameters, namely the true/false positive
rates q and p. Since πNm is the (unknown) number of infected individuals in the main study, we can use Assumptions
(A1) and (A2) to write down this decomposition formally:

S−

c ∼ Binom(N−

c , p), S+

c ∼ Binom(N+

c , q), and

Sm ∼ Binom(πNm, q)  
true positives

+ Binom(Nm − πNm, p)  
false positives

, (3)

where Binom denotes the binomial random variable. For brevity, we define S = (S−
c , S

+
c , Sm) as our joint data statistic,

and θ = (p, q, π ) as the joint parameter value. The independence of tests implies that the density of S can be computed
exactly as follows.

f (S | θ) = d(S−

c ;N−

c , p) · d(S+

c ;N+

c , q) ·

⎡⎣j=Sm∑
j=0

d(j;πNm, q) · d(Sm − j;Nm − πNm, p)

⎤⎦ , (4)

where d(k; n, s) denotes the probability of k successes in a binomial experiment with n trials and s probability of success.
There are several ways to implement Eq. (4) efficiently — we defer discussions on computational issues to Section 5.

3. Method

We begin with an illustrative example to describe the proposed method on a high level. We give more details along
with some theoretical guarantees in the section that follows.

3.1. Illustrative example

Let us consider the Santa Clara study (Bendavid et al., 2020) with observed data:

(N−

c ,N
+

c ,Nm) = (401, 197, 3330), and (s−c,obs, s
+

c,obs, sm,obs) = (2, 178, 50).

The unknown quantities in our analysis are q, p and π : the true positive rate of the test, the false positive rate, and the
unknown prevalence in the main study, respectively. Assume zero prevalence (π = 0%), 90% true positive rate (q = 0.9),
and 1.5% false positive rate (p = 0.015). We ask the question: ‘‘Is the combination (p, q, π ) = (0.015, 0.90, 0) compatible
with the data?’’. Naturally, this can be framed in statistical terms as a null hypothesis:

H0 : (p, q, π ) = (0.015, 0.90, 0). (5)

To test H0 we have to compare the observed positive test results with the values that could have been observed if indeed
the true model parameter values were (p, q, π ) = (0.015, 0.90, 0). Our model is simple enough that we can execute this
hypothetical analysis exactly based on the density of f (S|θ) in Eq. (4), where S = (S−

c , S
+
c , Sm) is the vector of all positive

test results, and θ is specified as in H0; see Fig. 1. To simplify visualization, in Fig. 1 we fix the component S+
c of S to its

observed value (S+
c = 178), and only plot the density with respect to the other two components, (S−

c , Sm); i.e., we plot
f (S | H0, S+

c = 178). One can visualize the full joint distribution f (S | H0) as a collection of such conditional densities for
all possible values of S+.
c
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Fig. 1. Density f (S|H0) of test positives S = (S−
c , S

+
c , Sm) conditional on H0 of Eq. (5), and with fixed S+

c = 178 (its observed sample value) to ease
isualization. The observed values (s−c,obs, sm,obs) = (2, 50) are marked with an asterisk. To test H0 we need to calculate some kind of ‘‘p-value’’ for
he observed point. In our construction, we simply test whether the density at the observed values exceeds an appropriately chosen threshold (see
ection 3.2).

The next step is to decide whether the observed value of S , namely sobs = (2, 178, 50), is compatible with the
istribution of Fig. 1. We see that the mode of the distribution is around the point (S−

c , Sm) = (5, 45), whereas the point
(2, 50) is at the lower edge of the distribution. If the observed values were even further, say at (S−

c , Sm) = (2, 80), then
we could confidently reject H0 since the density at (2, 80) is basically zero. Here, we have to be careful because the
actual observed values are still somewhat likely under H0. Our method essentially accepts H0 when the density of this
distribution at the observed value sobs of statistic S is above some threshold c0, that is, we decide based on the following
rule:

Accept H0 if f (sobs|H0) > c0. (6)

The test in Eq. (6) is reminiscent of the likelihood ratio test, the key difference being that our test does not require
maximizations of the likelihood function over the parameter space, which is computationally intensive, and frequently
unstable numerically — we make a concrete comparison in the application of Section 4.3. Our test essentially uses the
density of S as the test statistic for H0, while threshold c0 generally depends on the particular null values being tested.
Assuming that the test of Eq. (6) has been defined, we can then test for all possible combinations of our parameter values,
θ ∈ Θ , in some large enough parameter space Θ , and then invert this procedure in order to construct the confidence set.
As usual, we would like this confidence set to cover the true parameters with some minimum probability (e.g., 95%). In
the following section, we show that this is possible through an appropriate construction of the test in Eq. (6), which takes
into account the level sets of the density function depicted in Fig. 1. The overall procedure is computationally intensive,
but is valid in finite samples without the need of asymptotic or normality assumptions. The details of this construction,
including the appropriate selection of the test threshold and the proof of validity, are presented in the following section.

3.2. Theoretical details

Let S = (S−
c , S

+
c , Sm) ∈ S denote the statistic, where S = {0, . . . ,N−

c } × {0, . . . ,N+
c } × {0, . . . ,Nm}, and let

θ = (p, q, π ) ∈ Θ be the model parameters. We take Θ to be finite and discrete; e.g., for probabilities we take a grid of
values between 0 and 1. Let sobs = (s−c,obs, s

+

c,obs, sm,obs) denote the observed value of S in the sample. Let f (S|θ) denote
the density of the joint statistic conditional on the model parameter value θ, as defined in Eq. (4). Suppose that θ0 is the
true unknown parameter value, and assume that

P(θ0 ∈ Θ) = 1. (A4)

Assumption (A4) basically posits that our discretization is fine enough to include the true parameter value with probability
one. In our application, this assumption is rather mild as we are dealing with parameters that are either probabilities or
integers, and so bounded within well-defined ranges. Moreover, this assumption is implicit essentially in all empirical
work since computers operate with finite precision. Our goal is to construct a confidence set Θ̂ ⊆ Θ such that
1−α
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(θ0 ∈ Θ̂1−α) ≥ 1 − α, where α is some desired level (e.g., α = 0.05). Trivially, Θ̂1−α = Θ satisfies this criterion,
o we will aim to make Θ̂ as narrow as possible. We will also need the following definition:

ν(z, θ) =
⏐⏐{s ∈ S : 0 < f (s|θ) ≤ z}

⏐⏐. (7)

Function ν depends on level sets of f , and counts the number of sample data points (over the sample space S) with
likelihood at θ that is smaller than the observed likelihood at θ.

We can now prove the following theorem.

Theorem 1. Suppose that Assumption (A4) holds. Consider the following construction for the confidence set:

Θ̂1−α =
{
θ ∈ Θ : f (sobs|θ) · ν(f (sobs|θ), θ) > α

}
. (8)

Then, P(θ0 ∈ Θ̂1−α) ≥ 1 − α.

Proof. For any fixed θ ∈ Θ consider the function g(z, θ) = z · ν(z, θ), z ∈ [0, 1]. Note that, for fixed θ, function g(z, θ) is
monotone increasing and generally not continuous with respect to z. Let Fθ = {f (s|θ) : s ∈ S}, and define as z∗

θ the unique
fixed point for which g(z∗

θ , θ) − α = 0, if that point exists; if not, define the point as z∗

θ = max{z ∈ Fθ : g(z, θ) ≤ α}. It
follows that g(z∗

θ , θ) ≤ α, for any θ, and so the event {f (sobs|θ) · ν(f (sobs|θ), θ) ≤ α} = {g(f (sobs|θ), θ) ≤ α} is the same as
the event {f (sobs|θ) ≤ z∗

θ }. Now we can bound the coverage probability as follows.

P(θ0 /∈ Θ̂1−α) = P {f (sobs|θ0) · ν(f (sobs|θ0), θ0) ≤ α}

= P
{
f (sobs|θ0) ≤ z∗

θ0

}
=

∑
s∈S

I
{
f (s|θ0) ≤ z∗

θ0

}
f (s|θ0) (9)

≤ z∗

θ0

∑
s∈S:0<f (s|θ0)≤z∗

θ0

1 = z∗

θ0
· ν(z∗

θ0
, θ0) = g(z∗

θ0
, θ0) ≤ α.

In the first line we used the test definition and Assumption (A4); in the second line, we used the monotonicity of g , and
the fact that θ0 is the true parameter value; in the last line, we used the definition of z∗

θ and the uniform bound on g . ■

When z∗

θ is not a discontinuity point of g , for all θ, then our test is exact in the sense that P(θ0 ∈ Θ̂1−α) = 1 − α. In
general, however, this condition will not hold for all Θ , and so the confidence set of Eq. (8) may be conservative and lose
power. We could potentially achieve more power if instead we define the confidence set as follows:

Θ̂alt
1−α =

{
θ ∈ Θ :

∑
s∈S

I
{
f (s|θ) ≤ f (sobs|θ)

}
f (s|θ) > α

}
. (10)

Theorem 2. Suppose that Assumption (A4) holds. Consider the construction of confidence set Θ̂alt
1−α as defined in Eq. (10).

Then, P(θ0 ∈ Θ̂alt
1−α) ≥ 1 − α.

Proof. The proof is almost identical to Theorem 1, if we replace the definition of g with g(z, θ) =
∑

s∈S I {f (s|θ) ≤ z} f (s|θ),
z ∈ [0, 1]. With this definition g is a smoother function, which explains intuitively why this construction will generally
lead to more power. ■

It is straightforward to see that Θ̂alt
1−α ⊆ Θ̂1−α almost surely since∑

s∈S

I
{
f (s|θ) ≤ f (sobs|θ)

}
f (s|θ) ≤ f (sobs|θ)

∑
s∈S

I
{
f (s|θ) ≤ f (sobs|θ)

}
= f (sobs|θ)ν(f (sobs|θ), θ).

Since both constructions are valid in finite samples, the choice between Θ̂1−α or Θ̂alt
1−α should be mainly based on

computational feasibility. The construction of Θ̂1−α may be easier to compute in practice as it depends on a summary
of the distribution f (s|θ) through the level set function ν, while the construction of Θ̂alt

1−α requires full knowledge of the
entire distribution. If it is computationally feasible, however, Θ̂alt

1−α should be preferred because it is contained in Θ̂1−α
with probability one, as argued above. This leads to sharper inference. See also the applications on serology studies in
Section 4 for more details, where the construction of Θ̂alt

1−α is feasible.

3.3. Concrete procedure and remarks

Theorems 1 and 2 imply the following simple procedure to construct a 95% confidence set:

Procedure 1.

1. Observe the value sobs = (s−c,obs, s
+

c,obs, sm,obs) of test positives in the validation study and the main study. Create a
grid Θ ⊂ [0, 1]3 for the unknown parameters θ = (p, q, π ).
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2. For every θ in Θ , calculate f (sobs|θ) as in Eq. (4), and ν(sobs, θ) as in Eq. (7).
3. Reject all values θ ∈ Θ for which f (sobs|θ) · ν(f (sobs|θ), θ) ≤ 0.05; alternatively, we can reject based on∑

s∈S I
{
f (s|θ) ≤ f (sobs|θ)

}
f (s|θ) ≤ 0.05.

4. The remaining values in Θ form the 95% confidence sets Θ̂0.95 or Θ̂alt
0.95, respectively.

emark 3.1 (Computation). Procedure 1 is fully parallelizable over θ, and so the main computational difficultly is the
need to sum over the sample space S. Note, however, that Procedure 1 can work for any choice of S given its density
f (S|θ). Thus, our method offers valuable flexibility for inference; for instance, f could be simulated, or S could be a
imple statistic (e.g., sample averages) and not necessarily an ‘‘argmax’’ estimator. See Section 5 for more discussion
n computation. ■

emark 3.2 (Identification). Procedure 1 is not a typical partial identification method in the sense that there are settings
nder which the model of Eq. (4) is point identified (i.e., when Nm,N−

c ,N
+
c → ∞). However, we choose to describe

Procedure 1 as a partial identification method for two main reasons. First, it is more plausible, in practice, that the
calibration studies are small and finite (N−

c ,N
+
c < ∞), since a calibration study needs to have high-quality, ground-truth

data. Second, it can happen that we do not have both kinds of calibration studies available (i.e., it could be that either
N−

c = 0 or N+
c = 0). In both of these settings, the underlying model is no longer point identified, and so Procedure 1 is

technically a partial identification method. ■

Remark 3.3 (Conservativeness). Procedure 1 generally produces conservative confidence intervals. However, we can show
that P(θ0 /∈ Θ̂alt

1−α) ≥ α − ϵ, where ϵ = maxs∈S P {f (S|θ0) = f (s|θ0)}. This value is very small, in general (e.g., ϵ ∼ 10−3 in
he Santa Clara study). In this case, the alternative construction is ‘‘approximately exact’’ in the sense that the coverage
robability of Θ̂alt

1−α is almost equal to (1 − α). ■

emark 3.4 (Marginal Inference). The parameter of interest in our application could only be the disease prevalence,
hereas the true/false positive rates of the antibody test may be considered ‘‘nuisance’’. In this paper, we directly projectˆ1−α (or Θ̂alt

1−α) on a single dimension to perform marginal inference (see Section 4), but this is generally conservative,
specially at the boundary of the parameter space (Stoye, 2009; Kaido et al., 2019; Chen et al., 2018). A sharper way to
o marginal inference with our procedures is an interesting direction for future work. ■

.4. Comparison to other methods

How does our method compare to a more standard frequentist or Bayesian approach? Here, we discuss two key
ifferences. First, as we have repeatedly emphasized in this paper, our method is valid in finite samples under only
ndependence of test results, which is a mild assumption. In contrast, a standard frequentist approach, say based on
he bootstrap, is inherently approximate and relies on asymptotics, while a Bayesian method requires the specification of
riors and posterior sampling. Of course, our procedure requires more computation, mainly compared to the bootstrap,
nd can be conservative for marginal inference (see Remark 3.4), but this is arguably a small price to pay in a critical
pplication such as the estimation of Covid-19 prevalence.
A second, more subtle, difference is the way our method performs inference. Specifically, we decide whether any θ ∈ Θ

s in the confidence set based on the entire density f (s|θ) over all s ∈ S, whereas both frequentist and Bayesian methods
ypically perform inference ‘‘around the mode’’ of the likelihood function f (sobs|θ) with fixed sobs ∈ S (we ignore how
he prior specification affects Bayesian inference to simplify exposition). This can explain, on an intuitive level, how the
nferences of the respective methods may differ. Fig. 2 illustrates the difference. On the left panel, we plot the likelihood,
(sobs|θ), as a function of θ ∈ Θ . Typically, in frequentist or Bayesian methods, the confidence set is around the mode, say

ˆ . We see that a parameter value, say θ1, with a likelihood value, f (sobs|θ1), that is low in absolute terms will generally not
e included in the confidence set. However, in our approach, the value f (sobs|θ1) is not important in absolute terms for
oing inference, but is only important relative to all other values {f (s|θ1) : s ∈ S} of the test statistic distribution f (s|θ1).
uch inference will typically include the mode, θ̂, but will also include parameter values at the tails of the likelihood
unction, such as θ1. As such, our method is expected to give more accurate inference in small-sample problems, or in
ettings with poor identifiability where the likelihood is non-smooth and multimodal. We argue that we actually see
hese effects in the application on Covid-19 serology studies analyzed in the following section — see also Section 4.3 and
ppendix D for concrete numerical examples.

. Application

In this section, we apply the inference procedure of Section 3.3 to several serology test datasets in the US. Moreover,
e present results for combinations of these datasets, assuming that the tests have identical specifications. This is likely
n untenable assumption, but it helps to illustrate how we can use our approach to flexibly combine all evidence. Before

e present the analysis, we first discuss some data on serology test performance to inform our inference.
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Fig. 2. Illustration of main difference between standard methods of inference, and the partial identification method in this paper. Left: In standard
ethods, inference is typically based on the likelihood f (sobs|θ) as a function over Θ , and around some mode θ̂. Parameter values with low likelihood,
uch as θ1 , are not included in the confidence set. Middle & right: In our method, inference is based on the entire distribution function f (s|θ) over
he statistic parameter space, S. As such, θ̂ will usually be in the confidence set (middle plot). Moreover, θ1 will also be in the confidence set if
(sobs|θ1) is high relative to the rest of f (s|θ1) even when f (sobs|θ1) is small relative to the mode f (sobs|θ̂) (right plot).

able 2
erformance characteristics of 12 different testing kits granted with emergency authorization status by the FDA. Source: Author calculations
ased on publicly available FDA dataset at https://www.fda.gov/medical-devices/emergency-situations-medical-devices/eua-authorized-serology-test-
erformance?mod=article_inline.
Test characteristic Min Median Mean Max

True positive rate (q)
Point estimate 77.4% 91.1% 90.6% 100%
95% CI, low endpoint 60.2% 81% 80.1% 95.8%
95% CI, high endpoint 88.5% 96.7% 95.3% 100%

False positive rate (p)
Point estimate 0% 0.35% 1.07% 5.6%
95% CI, low endpoint 0% 0.1% 0.52% 2.7%
95% CI, high endpoint 0.3% 1.6% 3.18% 11.1%

4.1. Serology test performance

An important aspect of serology studies are the test performance characteristics. As of May 2020, there are perhaps
ore than a hundred commercial serology tests in the US, but they can differ substantially across manufacturers and

echnologies. In our application, we use data from Bendavid et al. (2020), who applied a serology testing kit distributed
y Premier Biotech. Bendavid et al. (2020) used validation test results provided by the test manufacturer, and also
erformed a local validation study in the lab. The combined validation study estimated a true positive rate of 80.3% (95%
I: 72.1%–87%), and a false positive rate of 0.5% (95% CI: 0.1%–1.7%).
To get an idea about how these performance characteristics relate to other available serology tests we use a dataset

ublished by the FDA based on benchmarking 12 other testing kits to grant emergency use authorization (EUA) status.
he dataset is summarized in Table 2. We see that the characteristics of the testing kit used by Bendavid et al. (2020)
re compatible with the FDA data shown in the table. For example, a true positive rate of 80% is below the mean and
edian of the point estimates in the FDA dataset. A false positive rate of 0.5% falls between the median and mean of the

espective FDA point estimates. A reason for this skewness is likely the existence of one outlier testing kit that performs
otably worse than the others (Chembio Diagnostic Systems). Removing this datapoint brings the mean false positive rate
own to 0.6%, very close to the estimate provided by Bendavid et al. (2020).

.2. Santa Clara study

In the Santa Clara study, Bendavid et al. (2020) report a validation study and main study, with (N−
c ,N

+
c ,Nm) =

(401, 197, 3330) participants, respectively. The observed test positives are sobs = (s−c,obs, s
+

c,obs, sm,obs) = (2, 178, 50),
respectively. Given these data, we produce the 95% confidence sets for (p, q, π ) following both procedures in (8) and (10)
described in Section 3.3. In Fig. 11 of Appendix C, we jointly plot all triples in the 3-dimensional space Θ̂0.95 of Eq. (8),
with additional coloring based on prevalence values. We see that the confidence set is a convex space tilting to higher
200
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Fig. 3. Confidence sets Θ̂0.95 and Θ̂alt
0.95 of the basic and the alternate 95% confidence set construction in Eqs. (8) and (10), respectively, for the Santa

Clara study. Each confidence set is broken down to pairwise relationships. All values in a shaded area are in the corresponding confidence set. The
horizontal dashed line corresponds to the empirical estimate of the false positive rate (p̂ = 0.5%) of the serology test; the dashed line corresponds
o the estimate of its true positive rate (q̂ = 80%); see Section 4.1 for details.

revalence values as the false positive rate of the test decreases. The true positive rate does not affect prevalence, as long
s it stays in the range 80%–95%.
To better visualize the pairwise relationships between the model parameters, we also provide Fig. 3 that breaks down

ig. 11 into two subplots, one visualizing the pairs (π, p) and another visualizing the pairs (π, q). The figure visualizes
oth Θ̂0.95 and Θ̂alt

0.95 to illustrate the differences between the two constructions. From Fig. 3, we see that the Santa Clara
tudy is not conclusive about Covid-19 prevalence. A prevalence of 0% is plausible, given a high enough false positive
ate. However, if the true false positive rate is near its empirical value of 0.5%, as estimated by Bendavid et al. (2020),
201
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hen the identified prevalence rate is estimated in the range 0.4%–1.8% in Θ̂0.95. Under this assumption, we see that
Θ̂alt

0.95 offers a sharper inference, as expected, with an estimated prevalence in the range 0.7%–1.5%. Even though, strictly
speaking, the statistical evidence is not sufficient here for definite inference on prevalence, we tend to favor the latter
interval because (i) common sense precludes 0% prevalence in the Santa Clara county (total pop. of about 2 million); (ii)
the interval generally agrees with the test performance data presented earlier, and (iii) it is still in the low end compared
to prevalence estimates from other serology studies (see Table 1). Regardless, pinning down the false positive rate is
important for estimating prevalence, especially when prevalence is as low as it appears to be in the Santa Clara study.
Roughly speaking, a decrease of 1% in the false positive rate implies an increase of 1.3% in prevalence.

4.3. Santa Clara study: Comparison to other methods

In this section, we aim to discuss how our method practically compares to more standard methods using data from
the Santa Clara study. In our comparison we include Bayesian methods, a classical likelihood ratio-based test, and the
Monte Carlo-based approach to partial identification proposed by Chen et al. (2018).9

4.3.1. Comparison to standard Bayesian and bootstrap-based methods
Due to initial criticism, the authors of the original Santa Clara study published a revision of their work, where they use

a bootstrap procedure to calculate confidence intervals for prevalence in the range 0.7%–1.8%.10 Some recent Bayesian
analyses report wider prevalence intervals in the range 0.3%–2.1% (Gelman and Carpenter, 2020). In another Bayesian
multi-level analysis, Levesque and Maybury (2020) report similar findings but mention that posterior summarization here
may be subtle, since the posterior density of prevalence in their specification includes 0%. These results are in agreement
with our analysis in the previous section only if we assume that the true false positive rate of the serology test was near
its empirical estimate (∼0.5%). We discussed intuitively the reason for such discrepancy in Section 3.4, where we argued
that standard methods typically do inference ‘‘around the mode’’ of the likelihood, and may thus miscalculate the amount
of statistical information hidden in the tails.

For a numerical illustration, consider two parameter values, namely θ1 = (0.5%, 90%, 1.2%) and θ2 = (1.5%, 80%, 0%),
where the components denote the false positive rate, true positive rate, and prevalence, respectively. In the Santa Clara
study, f (sobs|θ1) = 2.2×10−3 and f (sobs|θ2) = 9.58×10−8, that is, θ2 (which implies 0% prevalence) maps to a likelihood
value that is many orders of magnitude smaller than θ1. In fact, θ1 is close to the mode of the likelihood, and so frequentist
or Bayesian inference is mostly based around that mode, ignoring the tails of the likelihood function, such as θ2. For our
method, however, the small value of f (sobs|θ2) is more-or-less irrelevant — what matters is how this value compares to
the entire distribution f (s|θ2). It turns out that f (sobs|θ2)ν(f (sobs|θ2), θ2) = 0.137, that is, 13.7% of the mass of f (s|θ2) is
elow the observed level f (sobs|θ2) = 9.58 × 10−8. As such, θ2 cannot be rejected at the 5% level (see also Appendix D).
his highlights the key difference of our procedure compared to frequentist or Bayesian procedures. More generally, we
xpect to see such important differences between the inference from our method and the inference from other more
tandard methods in settings with small samples or poor identification (e.g., non-separable, multimodal likelihood).

.3.2. Comparison to likelihood ratio test
As briefly described in Section 3.1, our test is related to the likelihood ratio test (Lehmann and Romano, 2006, Chapter

). Here, we study the similarities and differences between the two tests, both theoretically and empirically through the
anta Clara study. Specifically, consider testing a null hypothesis that the true parameter is equal to some value θ0 using
he likelihood ratio statistic,

t(sobs|θ0) =
f (sobs|θ0)

maxθ ̸=θ0 f (sobs|θ)
. (11)

Since f is known analytically from Eq. (4), the null distribution of t(S|θ0) can be fully simulated. An exact p-value can
then be obtained by comparing this null distribution with the observed value t(sobs|θ0). We can see that this method
s similar to ours in the sense that both methods use the full density f (S|θ0) in the test, and both are exact. The main
ifference, however, is that our method is using a summary of the density values f (S|θ0) that are below the observed
alue f (sobs|θ0), which avoids the expensive (and sometimes numerically unstable) maximization in the denominator of
he likelihood ratio test in (11). Our proposed method turns out to be orders of magnitude faster than the likelihood
atio approach as we get 50-fold to 200-fold speedups in our setup — see Section 5.1 for a more detailed comparison in
omputational efficiency.
To efficiently compare the inference between the two tests, we sampled 5000 different parameter values from insideˆ0.95 — i.e., the 95% confidence set from the basic test in Eq. (8) — and 5000 parameter values from Θ \ Θ̂0.95, and then

alculated the overlap between the test decisions. The likelihood ratio test rejected 3% of the values from the first set,
nd 98% of the values from the second set, indicating a good amount of overlap between the two tests. The correlation
etween the p-value from the likelihood ratio test, and the values f (sobs|θ)ν(f (sobs|θ), θ), which our basic test uses to

9 All these methods are fully implemented in the accompanying code at https://github.com/ptoulis/covid-19.
10 Link: https://www.medrxiv.org/content/10.1101/2020.04.14.20062463v2.full.pdf.
202

https://github.com/ptoulis/covid-19
https://www.medrxiv.org/content/10.1101/2020.04.14.20062463v2.full.pdf


P. Toulis Journal of Econometrics 220 (2021) 193–213

m
u
r

S
w
p
t
b
o

4

i
w

F
F

e
t
e
(
t
s
c

4

s
t
r

t

ake a decision in Eq. (8), was equal to 0.94. The correlation with the alternative confidence set construction is 0.90,
sing instead the values I

{
f (s|θ) ≤ f (sobs|θ)

}
f (s|θ) in the above calculation. Since the likelihood ratio test is exact, these

esults suggest that our test procedures are generally high-powered.
In Figs. 7 and 8 of Appendix A, we plot the 95% confidence sets from the likelihood ratio test described above for the

anta Clara study and the LA county study (of the following section). The estimated prevalence is 0%–1.9% for Santa Clara,
hich is shorter than Θ̂0.95 but wider than Θ̂alt

0.95, as reported earlier; the same holds for LA county. As with our method,
revalence here is estimated through direct projection of the confidence set, which may be conservative. It is also possible
hat with more samples the likelihood ratio test could achieve the same interval as Θ̂alt

0.95 (we used only 100 samples),
ut this would come at an increased computational cost. Overall, the likelihood ratio test produces very similar results to
ur method, but it is not as efficient computationally.

.3.3. Comparison to Monte Carlo confidence set method of Chen et al. (2018)
In recent work, Chen et al. (2018) proposed a Monte Carlo-based method of inference in partially identified models. The

dea is to sample from a quasi-posterior distribution, and then calculate qn, the 95% percentile of {f (sobs|θ(j)), j = 1, . . .},
here θ(j) denotes the jth sample from the posterior. The 95% confidence set is then defined as:

Θ̂ = {θ ∈ Θ : f (sobs|θ) ≥ qn}. (12)

We implemented this procedure with an MCMC chain that appears to be mixing well — see Appendix B and Fig. 9 for
details. The 95% confidence set, Θ̂ , is given in Fig. 10 of Appendix B. Simple projection, yields a prevalence in the range
0.9%–1.43%. This suggests that our MCMC ‘‘spends more time’’ around the mode of the likelihood, which we back up with
numerical evidence in Appendix B. Finally, we also tried Procedure 3 of Chen et al. (2018), which does not require MCMC
simulations but is generally more conservative. Prevalence was estimated in the range 0.12%–1.65%, which is comparable
to our method and the likelihood ratio test.

4.4. LA county study

Next, we analyze the results from a recent serology study in Los Angeles county, which estimated a prevalence of
4.1% over the entire county population.11 We use the same validation study as before since this study was executed by
the same team as the Santa Clara one. Here, the main study had Nm = 846 participants with sm,obs = 35 positives.12
or inference, we only use the alternative construction, Θ̂alt

0.95, of Eq. (10) to simplify exposition. The results are shown in
ig. 4.
In contrast to the Santa Clara study, we see that the results from this study are conclusive. The prevalence rate is

stimated in the range 1.7%–5.2%. If the false positive rate is, for example, closer to its empirical estimate (0.5%) then
he identified prevalence is relatively high, somewhere in the range 3%–5.2%. We also see that the true positive rate is
stimated in the range 85%–95%, which is higher than the empirical point estimate of 80% provided by Bendavid et al.
2020). In fact, the empirical point estimate is not even in the 95% confidence set. Finally, as an illustration, we combine
he data from the Santa Clara and LA county studies. The assumption is that the characteristics of the tests used in both
tudies were identical. The results are shown in Fig. 12 of Appendix C. We see that 0% prevalence is consistent with the
ombined study as well. Furthermore, prevalence values higher than 2.5% do not seem plausible in the combined data.

.5. New York study

Recently, a quasi-randomized study was conducted in New York state, including NYC, which sampled individuals
hopping in grocery stores. Details about this study were not made available. Here, we assume that the medical testing
echnology used was the same as in the Santa Clara and LA county studies, or at least similar enough that the comparison
emains informative.

Under this assumption, we can use the same validation study as before, with (N−
c ,N

+
c ) = (401, 197) participants in

he validation study, and (s−c,obs, s
+

c,obs) = (2, 178) positives, respectively. The main study in New York had Nm = 3000
participants with sm,obs = 420 observed test positives.13 The Θ̂alt

0.95 confidence set on this dataset is shown in Fig. 5. We
see that the evidence in this study is much stronger than the Santa Clara/LA county studies with an estimated prevalence
in the range 12.9%–16.6%. The true positive rate is now an important identifying parameter in the sense that knowing its
true value could narrow down the confidence set even further.

Finally, in Fig. 13 of Appendix C we present prevalence estimates for a combination of all datasets presented so far,
while using both constructions, Θ̂0.95 and Θ̂alt

0.95, to illustrate their differences. As mentioned earlier, this requires the

11 http://publichealth.lacounty.gov/phcommon/public/media/mediapubhpdetail.cfm?prid=2328.
12 This number was not reported in the official study announcement mentioned above. It was reported in a Science article referencing one of
the authors of the study: https://www.sciencemag.org/news/2020/04/antibody-surveys-suggesting-vast-undercount-coronavirus-infections-may-be-
unreliable.
13 https://www.nytimes.com/2020/04/23/nyregion/coronavirus-antibodies-test-ny.html.
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Fig. 4. Visualization of Θ̂alt
0.95 for the LA county study. We see that the evidence for Covid-19 prevalence are stronger than the Santa Clara study.

Prevalence is estimated in the range 1.7%–5.2%. This is shortened to 3%–5.2% if we assume a 0.5% false positive rate for the antibody test.

Fig. 5. Visualization of confidence set, Θ̂alt
0.95 , for New York State study. We see that this study gives strong evidence for prevalence in the range

13%–16.6%.

assumption that the antibody testing kits used in all three studies had identical specifications, or at least very similar
so that the comparison remains informative. This assumption is most likely untenable given the available knowledge.
However, we present the results there for illustration and completeness. The general picture in the combined study is
a juxtaposition of earlier findings. For example, both false and positive rates are now important for identification. The
204
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i
dentified prevalence is in the range 5.2%–8.2% in Θ̂alt
0.95 (and 3.2%–8.9% in Θ̂0.95). These numbers are larger than the Santa

Clara/LA county studies but smaller than the New York study.

5. Discussion

5.1. Computation

The procedure described in Section 3.3 is computationally intensive for two main reasons. First, we need to consider
all values of θ ∈ Θ , which is a three-dimensional grid. Second, given some θ, we need to calculate f (s|θ) for each s ∈ S,
which is also a three-dimensional grid.

To deal with the first problem we can use parallelization, since the test decisions in step 3 of our procedure are
independent of each other. For instance, the results in Section 4 were obtained in a computing cluster (managed by
Slurm) comprised of 500 nodes, each with x86 architecture, 64-bit processors, and 16 GB of memory. The total wall
clock time to produce all results of the previous section was about 1 h. The results for, say, the Santa Clara study can
be obtained in much shorter time (a few minutes) because they contain few positive test results. To address the second
computational bottleneck we can exploit the independence property between S−

c , S
+
c , and Sm, as shown in the product

of Eq. (4). Since any zero term in this product implies a zero value for f , we can ignore all individual term values that
are very small. Through numerical experiments, we estimate that this computational trick prunes on average 97% of S
leading to a significant computational speedup. For example, to test one single value θ0 ∈ Θ takes about 0.25 s in a typical
high-end laptop, which is a 200-fold speedup compared to 50 s required by the likelihood ratio test of Section 4.3.2 —
see Appendix A for more details.

5.2. Extrapolation to general population

As mentioned earlier, prevalence π in Eq. (2) is a finite-population estimand, that is, it is a number that refers to
the particular population in the study. Theorem 1 shows that our procedure is valid for π only under Assumption (A4).
However, to extrapolate to the general population we generally need to assume that

I−

c , I
+

c , Im are random samples from the population. (A3)

This is currently an untenable assumption. For example, in the Santa Clara study the population of middle-aged white
women was overrepresented, while the population of Asian or Latino communities was underrepresented. The impact
from such selection bias on the inferential task is very hard to ascertain in the available studies. Techniques such as post-
stratification or reweighing can help, but at this early stage any extrapolation using distributional assumptions would be
too speculative. However, selection bias is a well-known issue among researchers, and can be addressed as widespread
and carefully designed antibody testing catches on. We leave this for future work.

6. Concluding remarks

In this paper, we presented a partial identification method for estimating prevalence of Covid-19 from randomized
serology studies. The benefit of our method is that it is valid in finite samples, as it does not rely on asymptotics,
approximations or normality assumptions. We show that some recent serology studies in the US are not conclusive (0%
prevalence is in the 95% confidence set). However, the New York study gives strong evidence for high prevalence in the
range 12.9%–16.6%. A combination of all datasets shifts this range down to 5.2%–8.2%, under a test uniformity assumption.
Looking ahead, we hope that the method developed here can contribute to a more robust analysis of future Covid-19
serology tests.
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ppendix A. More details on the likelihood ratio test

The concrete testing procedure for the likelihood ratio test of Section 4.3.2 is as follows.

1. Define the test statistic:

t(s|θ0) =
f (s|θ0)

maxθ ̸=θ0 f (s|θ)
.

2. Calculate the observed value tobs = t(sobs|θ0).
3. Sample {s(j), j = 1, . . . , r} from f (S|θ0) (we set r = 1000 samples).
4. Calculate the one-sided p-value as 1

r

∑r
j=1 I{t(s

(j)
|θ0) ≥ tobs}.

For the maximization in the denominator of t(s|θ0) we use the standard BFGS algorithm on a natural
re-parameterization. Specifically, we define the natural parameters as follows:

ψ0 = logit(p);ψ1 = logit(q);ψ2 = logit(π ),

where (p, q, π ) ≡ θ are the original model parameters, i.e., false positive rate, true positive rate, and prevalence,
respectively; and logit(z) = log(z/(1 − z)), z ∈ (0, 1). To avoid numerical instabilities we define logit(0) = log(ϵ/(1 − ϵ))
and logit(1) = log((1 − ϵ)/ϵ), where ϵ is a small constant, e.g., ϵ =1e−8. Since the natural parameter ψ = (ψ0, ψ1, ψ2)
is unconstrained, the optimization routine becomes faster and easier; mapping back from ψ to θ is also straightforward.

Fig. 6. Relationship between likelihood ratio test and our testing procedures, namely the ‘‘classic’’ construction of Eq. (8), and the alternative
onstruction in Eq. (10).

The maximization takes about 0.05 s of wall-clock time in a typical high-end laptop.14 It therefore takes a total of 50 s
to test one single hypothesis based on 1000 samples of the likelihood ratio. In contrast, our partial identification method
takes 0.25 s of wall-clock time to test the same single null hypothesis, a 200-fold speedup. As explained in Section 5.1 this
is because the computation of f (s|θ) can be done very efficiently due to the decomposition of f into three independent
terms in Eq. (4).

Since the likelihood ratio test cannot be fully implemented, we chose to sample randomly 5000 parameter values from
the basic confidence set, Θ̂0.95, and 5000 values from Θ \ Θ̂0.95, and then test each value using the likelihood ratio test.

14 CPU: Intel(R) Core(TM) i7-8559U CPU at 2.70 GHz; Memory: 16 GB 2133 MHz LPDDR3.
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Fig. 7. 95% confidence set from likelihood ratio test-based procedure of Section 4.3.2 for Santa Clara study (top) and LA county study (bottom).
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Fig. 8. 95% confidence set from likelihood ratio test-based procedure of Section 4.3.2 for Santa Clara study and LA county study combined.

he idea is to explore the agreement of the two tests. The overlap between the likelihood ratio test decisions and the basic
onstruction is 97.3% for the values from Θ̂0.95, and 97.7% for the values from Θ \ Θ̂0.95. There was even more agreement
ith the alternative construction, specifically 97.3% and 99.6%, respectively.
Fig. 6 also shows some more detailed results. The x-axis represents the p-value generated in step 4 of the likelihood

ratio test. The y-axis represents the ‘‘strength of evidence’’ calculated by our procedure. For the basic construction, Θ̂0.95,
of Eq. (8) the strength of evidence is defined as f (sobs|θ0)ν(f (sobs|θ0), θ0) — the larger this value is, the stronger we reject.
or the alternative construction, Θ̂alt

0.95, of Eq. (10) the value is defined as
∑

s∈S I{f (s|θ0) ≤ f (sobs|θ0)}f (s|θ0). We see high
orrelation between the different tests (0.94 and 0.90, respectively).

ppendix B. More details on Monte Carlo confidence sets

To implement the method of Chen et al. (2018) we used the following procedure.

1. We defined the natural parameter, ψ as in the previous section, and imposed a uniform prior: f (ψ) ∝ 1.
2. We implement the Metropolis–Hastings algorithm through a symmetric proposal distribution, q(ψ′

|ψ) ∼ N(ψ̂, σ 2I),
where ψ̂ is the maximum-likelihood estimate.

3. We run the Metropolis–Hastings for 200,000 iterations and got samples from the posterior distribution f (ψ|sobs) ∝

f (sobs|ψ)f (ψ). We discarded the first 20% of the posterior samples. Fig. 9 shows that the MCMC chain appears to be
mixing well.

4. We transformed the ψ samples back as θ samples, and calculated qn, the 95% percentile of {f (sobs|θ(j)), j = 1, . . .},
where θ(j) denotes the jth sample. The 95% confidence set is then defined as:

Θ̂ = {θ ∈ Θ : f (sobs|θ) ≥ qn}.
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Fig. 9. Mixing plots for the MCMC chain used to construct the 95% confidence set described in Section 4.3.3.

Fig. 10. The MCMC-based 95% confidence set, Θ̂ , produced by Procedure 1 of Chen et al. (2018).
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The 95% posterior credible interval (shown in the bottom panel of Fig. 9) was 0.27%–1.56%, which is similar but
lightly more narrow than the intervals from the Bayesian analyses described in Section 4.3. The 95% confidence set, Θ̂ ,
efined above is visualized in Fig. 10. Simple projection, yields a prevalence in the range 0.9%–1.43%. We note that 0.9%
orresponds to 32 true positives out of total 50 positives in the Santa Clara study. We can see from Fig. 9 that this number
orresponds to the mode of the posterior marginal distribution for prevalence. Given the symmetry of this posterior
istribution around the mode, it is surprising that the low-end of the confidence set corresponds to 0.9% prevalence (i.e,
2 true positives out of 3330 tests). We can explain this discrepancy numerically by checking that values higher than
2 (prevalence higher than 0.9%), that is, values on the right-end of the marginal posterior distribution, generally map
o (much) higher likelihood values compared to values on the left-end. So, even though the marginal posterior looks
ymmetric, the likelihood values are not. Since, the confidence set Θ̂ defined above is based on the likelihood values, it
ill be ‘‘skewed’’ towards higher values of θ.

ppendix C. Additional results from serology studies in the US

Here, we present additional results from our analysis on serology studies from the US. In particular, we combine
atasets from various studies and analyze the results. This requires the assumption that the antibody testing kits used in
ll three studies had identical specifications, or at least very similar so that the comparison remains informative.

Fig. 11. Confidence set, Θ̂0.95 , for Santa Clara study, comprised of triples θ = (p, q, π ).
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(

Fig. 12. Visualization of confidence sets, Θ̂0.95 and Θ̂alt

0.95 , for the Santa Clara and LA county studies, combined. The combined results are inconclusive
0% prevalence is in the confidence sets).
211



P. Toulis Journal of Econometrics 220 (2021) 193–213

i

A

B
l

S
w

Fig. 13. Visualization of confidence sets, Θ̂0.95 and Θ̂alt
0.95 , for Santa Clara, LA county and New York studies, combined. Assuming the data combination

s valid, the combined dataset estimates Covid-19 prevalence in the range 5.2%–8.2%.

ppendix D. Numerical example illustrating differences with likelihood-based methods

Here, we illustrate the differences between our proposed inferential method and likelihood-based methods (both
ayesian and frequentist) through a simple numerical example. Suppose that S is such that |S| = N , with N extremely
arge, and fix some parameter value θ1 to test. Suppose also that the conditional density f (S|θ1) is defined as:

f (s0|θ1) = 0.95 − ϵ1, f (s1|θ1) = ϵ, and f (s|θ1) = (0.05 − ϵ + ϵ1)/(N − 2), ∀s ∈ S \ {s0, s1}.

et both ϵ and ϵ1 to be infinitesimal values. As such, under θ1 we observe s0 with probability roughly equal to 0.95, or s1
ith some very small probability ϵ, or observe any other remaining value from S uniformly at random.
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Suppose we observe sobs = s1 in the data. Should we reject or accept θ1?
Since we can make ϵ arbitrarily small, an inferential method that focuses only on the likelihood function, would

onclude that any θ ∈ Θ is more plausible than θ1, as long as f (sobs|θ) ≫ ϵ. Both frequentist and Bayesian methods
ould agree to such conclusion, and typically would perform inference around the mode of f (sobs|θ) with respect to θ.
owever, our procedure makes a different conclusion, and actual accepts θ1 (at the 5% level)! The reason is that∑

s∈S

I{f (s|θ1) ≤ f (sobs|θ1)}f (s|θ1) = ϵ +
0.05 − ϵ + ϵ1

N − 2
(N − 2) = 0.05 + ϵ1 > 0.05.

That is, even though f (sobs|θ1) is equal to a tiny value, there is still 5% of the mass of f (s|θ1) at or below that value.

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.10.005.
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