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crime hotspots

◦ 37, 055 street segments
◦ N = 967 “hotspots”.
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◦ 37, 055 street segments
◦ N = 967 “hotspots”.
◦ 384 treated at random.
⇒ 6-month increase in
police patrolling time

observed treatment
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Outcome: Total crime score

observed treatment
crime hotspots



Questions

How does the intervention affect crime?
→ direct effect?
→ spillovers to adjacent streets?

We will focus on testing for spillovers.

We prefer a model-free approach, so we will use the randomization
method of inference.
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Notation and data

N units (streets) indexed by i = 1, 2, . . . ,N.

Denote:

Z = (Z1, . . . ,ZN) as binary treatment; P(Z ) = design;
Y = (Y1, . . . ,YN) as vector of observed outcomes.
↪→ will also use Z obs,Y obs to emphasize observed quantities;

and Z ′,Y ′ will denote “counterfactuals”.

Hotspots received increased policing, while non-hotspots lost about
∼5min of patrol time.

Outcome is a weighted average of crime indicators:
↪→0.550 for homicides, 0.112 for assaults, 0.221 for car and motorbike
theft, and 0.116 for personal robbery (Collazos et al., 2019).
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Outline

1. No interference: classical Fisher Randomization Test (FRT).

2. Interference
I Treatment exposures.

I The null-exposure graph.

I “Clique-based” FRT for spillovers.

I Related work.

3. Application in Medellin experiment.

4. (extra, if time) Power study; extensions.
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Classical approach: no interference

Assume no interference: Outcome of unit depends only on its own
treatment assignment.
↪→Only two potential outcomes, Yi (0),Yi (1), for every i .

Unrealistic in this application. But helps build the intuition.

Classical question of randomization inference:
Does treatment have an effect at all?

H0 : Yi (0) = Yi (1) for every i .

Key implication of H0 is that Y is fixed across all possible
randomizations.
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Fisher randomization test (1935)

H0 : Yi (0) = Yi (1), for every i .

The procedure:

Choose test statistic T = t(y , z) (e.g., difference in means).

1. T obs = t(Y obs,Z obs).
2. Sample Z

′ ∼ P(Z
′
), store TR = t(Y obs,Z

′
).

3. p-value = E
[
1{TR ≥ T obs}

]
.

Proof of validity:

t(Y obs,Z
′
)
H0= t(Y ′,Z

′
)

d
= t(Y obs,Z obs)

“TR ∼ T obs (under null)”
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Advantages of Fisherian randomization

◦ Exact. The test is valid in finite samples.

◦ Minimal assumptions. No model for Y .

◦ Robust. Same answer under some transformations of Y s.

Our goal is to use Fisherian randomization under interference.
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“No interference” assumption is too strong ...

Assumption of no interference is not realistic in our application.
Spillovers are actually a quantity of interest.

First problem is notational:
In general, Yi (z) is the potential outcome of i under population
treatment assignment z .
↪→More outcomes than just Yi (0),Yi (1).

In principle there could be 2N potential outcomes. Impractical.

To make progress we can use the concept of exposure functions.
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Treatment exposures

For any given Z , unit i is exposed to “something more” than Zi .
We assume unit i ’s exposure is defined by a function:

fi : {0, 1}N → E .

E = set of possible exposures (short-range spillover, medium-
range spillover, pure control, etc.)

e.g., fi (z) = (zi ,
∑

j 6=i gijzj) ∈ {0, 1} × {0, 1, 2, . . .}, where gij
indicates whether i and j can influence each other (classmates or
neighbors).

Definition of E , {fi} depends on the substantive scientific question.
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What’s in a treatment exposure?

Intuitively, we think that fi (z) defines “equivalence classes” across
the population assignments; e.g.,

Yi (z) = Yi (z
′), if fi (z) = fi (z

′).

This assumption is not necessary for our method but helps with
interpretation of our results.

Alternative: when fi are unspecified we may consider marginal
estimands, e.g., E{Yi (zi = 1, z−i )} − E{Yi (zi = 0, z−i )};
↪→see Aronow and Samii (2019); Savje (2019).
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Question: Is there a short-range spillover effect?

We can use exposures {fi} to study spillovers/interference.

H0 : Yi(z) = Yi(z
′) for every i , z , z ′,

such that fi(z), fi(z ′) ∈ {short, control}.

Here, we defined:

fi (z) =


short, zi = 0, disti < 125m
control, zi = 0, disti > 500m
neither, otherwise.

disti = distance to closest treated street.
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Use classical Fisherian randomization? Not quite ...

Recall, TR ∼ T obs under H0 for things to work. However,

TR = t(Y obs,Z ′) ��AA
H0= t(Y ′,Z

′
)

d
= t(Y obs,Z obs) = T obs.

The null is relevant for only 2 out of the 3 possible exposures:

H0 : Yi (short) = Yi (control)
?
= Yi (neither), for every i.

In this case, the null is not sharp. We cannot impute missing
potential outcomes Y

′
freely under any Z

′
.
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Testing Yi(short) = Yi(control), ∀i .
Idea: If we focus on units only exposed to short or control then
we can impute their missing outcomes in the randomization test.
↪→i.e., conditional randomization test (Aronow, 2012) (Athey et al,
2018) (Basse et al, 2019). Will discuss later.

Basse et al (2019) formalize this approach: given Z obs we condition on
some event C according to P(C |Z obs), known as the conditioning
mechanism. The conditional test is valid as long as:

1. Can impute outcomes conditional on C .

2. We randomize according to the correct conditional distribution:

P(Z ′|C ) ∝ P(C |Z ′)︸ ︷︷ ︸
conditioning mech.

·P(Z ′)︸ ︷︷ ︸
design

.

? But how to construct P(C |Z obs)?
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The null exposure graph

1

2

3

1

2

3

4

5

6

7

8

18/ 38

Exposure short is light blue.
Exposure control is navy.

edge (i , j) denotes that unit i is
exposed to {short, control}
under assignment j .

Units Assignments
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The null exposure graph
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Notice that {{U2,U3}, {A2,A3}}
is a complete subgraph (biclique).

Units Assignments



The null exposure graph
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Idea: Within a (bi)clique that
contains Z obs we can run the
randomization test because the
null is sharp!

Units Assignments



The null exposure graph
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Idea: Implies the conditioning
mechanism of the form:

P(C |Z obs) = 1{Z obs ∈ C}.

So C should be unique (full
definition coming soon).

Units Assignments



Returning to the map
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The observed assignment
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Zobs

384 streets are
treated with
increased police
patrolling



Short-range spillover units (short)
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Using network
topology, color
units exposed to
short under Z obs



Pure control units (control)
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Using network
topology, color
units exposed to
control under
Z obs



We can remake these pictures for every assignment Z drawn
from design P(Z ) ...

→ The output is our null exposure graph!
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Null exposure graph and clique
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Null-exposure graphs: summary

◦ A null-exposure graph, Gf , is thus uniquely defined given H0, {fi}.
(see formal defn., Slide 42).

◦ H0 is sharp in a clique of Gf . So, we run a conditional
randomization test within a clique.
↪→i.e., P(C |Z obs) = 1{Z obs ∈ C}.

◦ Such test requires a “clique test statistic” t(y , z ;C ) where C is a
clique in Gf such that

t(y , z ;C ) = t(y ′, z ′;C ), if yC = y ′C and zC = z ′C .

↪→yC , zC are sub-vectors of y , z only with units/assignments in C .

? But which clique to condition on?
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A naive test (which doesn’t work)

Not all approaches lead to a valid test. For example, consider:

1. Given Z obs calculate maximum clique in null-exposure graph,
Gf , that contains Z obs, say,

C ∗ = mc(Z obs;Gf ); (mc = ”max clique”).

2. Condition the randomization test on C ∗, resampling
assignments according to

PR(Z
′|C ∗) = 1{Z ′ ∈ C ∗}P(Z ′)

P(C ∗)
.

Proof of invalidity:

The correct conditional distribution is:

P(Z ′|C ∗) = P(C ∗|Z ′)P(Z ′)
P(C ∗)

=
1{mc(Z ′;Gf ) = C ∗}P(Z ′)

P(C ∗)
6= PR .
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Clique-based randomization test

1. Decompose: Compute biclique decomposition? C of
Gf . Pick out clique containing Z obs, call it C .

2. Condition: Compute T obs = t(Y obs,Z obs;C ) given C .

3. Summarize:
p-value = E

[
1{t(Y obs,Z ′;C ) ≥ T obs} | C

]
.

↪→Here, we sample with respect to

PR(Z
′|C ) ∝ 1{Z ′ ∈ C} · P(Z ′)︸ ︷︷ ︸

design

? (see formal defn., Slide 43).
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Why this works

◦ The randomization distribution in the test is:

PR(Z
′|C ) =

1{Z ′ ∈ C}P(Z ′)

P(C )
.

◦ The correct conditional distribution is:

P(Z ′|C ) =
P(C |Z ′)P(Z ′)

P(C )
=

1{C ∈ C}1{Z ′ ∈ C}P(Z ′)

P(C )
= PR ,

whenever we use only cliques from decomposition C.

Proof of validity:

t(Y obs,Z ′;C )
H0,C
= t(Y ′,Z ′;C )

d
= t(Y obs,Z obs;C )

“TR ∼ T obs (under null conditional on C )”

31/ 38



Why this works

◦ The randomization distribution in the test is:

PR(Z
′|C ) =

1{Z ′ ∈ C}P(Z ′)

P(C )
.

◦ The correct conditional distribution is:

P(Z ′|C ) =
P(C |Z ′)P(Z ′)

P(C )
=

1{C ∈ C}1{Z ′ ∈ C}P(Z ′)

P(C )
= PR ,

whenever we use only cliques from decomposition C.

Proof of validity:

t(Y obs,Z ′;C )
H0,C
= t(Y ′,Z ′;C )

d
= t(Y obs,Z obs;C )

“TR ∼ T obs (under null conditional on C )”
31/ 38



Biclique decomposition

◦ Finding cliques is NP-hard (Peeters, 2003; Zhang et al, 2014).

◦ We use the “Binary Inclusion-Maximal Biclustering Algorithm”,
which uses a “divide and conquer” method to find
cliques (Bimax, Prelic et. al, 2006).
↪→works fine for hundred nodes/thousands edges.

◦ Our method is constructive, still needs to be optimized.
↪→i.e., different biclique decompositions will have different power
properties, but all are valid.
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Related work

We can also use our framework to describe related work:

I Aronow (2012) and Athey et al (2018) effectively propose to
randomly sample focal units on one side, and then find the
maximum induced clique to condition on.

↪→General procedure but the random selection of focals does not
exploit the problem structure — Loss of power.
(See also power study, Slide 44.)

I Basse et al (2019) develop a clique decomposition that
provably leads to permutation test under a setting with
clustered interference.

↪→Case-by-case analysis — Cannot generalize.
33/ 38



Spatial interference: Medellin data

Statistics of the null-exposure graph:
I #units = 37,055.
I #assignments = 10,000.
I #edges = 163,836,445.
I density (#edges / total #of possible edges) = 44.2%

Statistics of the clique we condition on:

I #units in clique = 3,981.
I #assignments in clique ≈ 1, 000.
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Focal units (in green) are in downtown and outskirts.
Clique test automatically discovers this pattern. 35/ 38



Varying radius of short-range effect
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Figure: P-values for clique tests with varying spillover radius.
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Concluding thoughts

◦ New method is presented for testing causal effects under
general interference using null exposure graphs and bicliques.

◦ Structure is placed on null hypothesis through exposure
functions.

◦ Translates the testing problem into graphical operations on the
null exposure graph.

◦ Future work:
understand power properties (see power study, Slide 44);
more hypotheses (intersection hypothesis, Slide 41)
optimized clique decomposition.
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Thank You!

Working paper: “A Graph-Theoretic Approach to Randomization
Tests of Causal Effects Under General Interference”

Athey, Eckles, Imbens,“Exact p-Values for Network Interference” (JASA, 2018)

Basse, Feller, Toulis, “Randomization tests of causal effects under interference”
(Biometrika, 2019)

Aronow, “A general method for detecting interference between units in
randomized experiments.” (Sociol. Methods Res., 2012)

Collazos, D., Garcia, E., Mejia, D., Ortega, D., and Tobon, S., “Hot spots
policing in a high crime environment: An experimental evaluation in Medellin”.
Documento CEDE, (2019-01).
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Extra slides
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Experiment and data

Units and treatment assignment

◦ 37,055 total streets (units)

◦ 967 streets are identified as crime “hotspots”

◦ 384 are treated with increased police presence

Outcomes and covariates

◦ Crime counts on all streets (murders, car and motorbike thefts,
personal robberies, assaults)

◦ Survey data on hotspot streets

◦ Characteristics of hotspots (distance from school, bus stop, rec
center, church, neighborhood, ...)

40/ 38

Access to
randomizations
based on the
design, pr(Z )



Extensions of H0

Athey et al (2018) consider more complex hypotheses than what can be
defined based on exposures; e.g.:

H0 : Yi (z) = Yi (z
′) if zi = z ′i .

This H0 is an intersection hypothesis:

Define fi (z) = zi . Then H0 is an intersection of:

H0
0 : Yi (z) = Yi (z

′) if fi (z) = fi (z
′) = 0. (1)

H1
0 : Yi (z) = Yi (z

′) if fi (z) = fi (z
′) = 1. (2)

We can still apply our method by extending the definition of the
null-exposure graph:

Ẽ =
{
(i , z) ∈ U× Z : fi (z) = Z obs

i

}
. (3)

Back, Slide 37 41/ 38



Definition. Let U,Z denote the units and assignments, respectively.
Let a, b ∈ E be any two exposures and consider the hypothesis:

Ha,b
0 : Yi (z) = Yi (z

′), for all i , z , z ′ such that fi (z), fi (z ′) ∈ {a, b}.

Define the vertex set as V = U ∪ Z, and the edge set as

E = {(i , z) ∈ U× Z : fi (z) ∈ {a, b}} . (4)

Then, Gf = (V ,E ) is the null-exposure graph of Ha,b
0 wrt f .

◦ For given Ha,b
0 and {fi} the null exposure graph Gf is unique.

◦ Imputation is possible within the clique that contains obs. Z :

Proposition. Consider a null-exposure graph, Gf , with some clique
C = (U,Z). If Z obs ∈ Z, then Yi (z) = Yi (Z

obs) under Ha,b
0 , for

all i ∈ U and all z ∈ Z.

Back, Slide 28

42/ 38



Definition. Let U,Z denote the units and assignments, respectively.
Let a, b ∈ E be any two exposures and consider the hypothesis:

Ha,b
0 : Yi (z) = Yi (z

′), for all i , z , z ′ such that fi (z), fi (z ′) ∈ {a, b}.

Define the vertex set as V = U ∪ Z, and the edge set as

E = {(i , z) ∈ U× Z : fi (z) ∈ {a, b}} . (4)

Then, Gf = (V ,E ) is the null-exposure graph of Ha,b
0 wrt f .

◦ For given Ha,b
0 and {fi} the null exposure graph Gf is unique.

◦ Imputation is possible within the clique that contains obs. Z :

Proposition. Consider a null-exposure graph, Gf , with some clique
C = (U,Z). If Z obs ∈ Z, then Yi (z) = Yi (Z

obs) under Ha,b
0 , for

all i ∈ U and all z ∈ Z.

Back, Slide 28 42/ 38



Clique Decomposition

Let U be the set of units and Z the set of population assign-
ments. A clique decomposition, C = {C1, . . . ,CK}, of the
null-exposure graph is a finite set of cliques, Ck = (Uk ,Zk),
k = 1, . . . ,K , such that⋃

k

Zk = Z, and Zk

⋂
Zk ′ = ∅, for any k 6= k ′.

↪→The set of units does not need to be partitioned.

Back, Slide 30
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Power study: clustered interference

To illustrate, we consider a clustered interference setting.

Suppose we have N units spread equally in K clusters.The clusters
could be classrooms or households.

Experiment: Randomly treat K/2 clusters. Within each treated
cluster, randomly treat 1 unit.
↪→Motivated by student absenteeism study (Basse et al, 2019).

◦ Do outcomes of a control unit in control cluster differ from
outcomes of a control unit in a treated cluster?
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The null and competing methods

H0 : Yi(control) = Yi(exposed), ∀i ,
where:
fi (Z) =control, if Zi = 0 and

∑
j∈[i ] Zj = 0;

fi (Z) =exposed, if Zi = 0 and
∑

j∈[i ] Zj = 1, and [i ] denotes i ’s cluster.

1. Athey et. al. (2018): sample one focal per household. Run
randomization test∗.

2. Basse et. al. (2019): For treated households, sample one
untreated focal unit (uniformly). For untreated households, sample
one focal. Run permutation test on the focals.

3. Clique test – proposed method.
45/ 38



Power comparison: Yi(exposed) = Yi(control) + τ

N = 300,K = 20 N = 300,K = 30 N = 300,K = 75.
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The clique test improves upon existing methods as the cluster size
increases (smaller K )!
↪→It achieves more flexible conditioning (i.e., many units/cluster).
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Power characteristics

Trade-off between #units,#assignments in the cliques.
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