Randomization tests for spillovers under interference: A graph-theoretic approach

Panagiotis (Panos) Toulis panos.toulis@chicagobooth.edu

Econometrics and Statistics University of Chicago, Booth School of Business

Interference exists when the outcomes of some unit depend on the treatment of others.

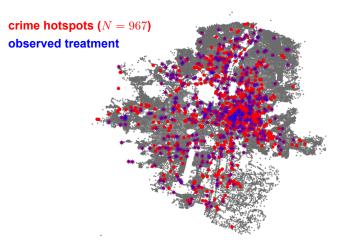
—(Hong and Raudenbush, 2006); (Hudgens and Halloran, 2008); (Aronow, 2012); (Bowers, 2013); (Toulis and Kao, 2013); (Ogburn and VanderWeele, 2014); (Eckles et. al., 2016); (Aronow and Samii, 2017); (Ogburn et. al., 2017); (Savje et al, 2017); (Athey et. al, 2018), (Basse and Feller, 2018); (Basse et. al., 2019); (Jagadeesan et. al., 2020) (Forastiere et. al., 2020);

Includes spillovers, peer effects, contagion, equilibrium effects, etc.

Pervasive in most social studies. Can be either a <u>nuisance</u> to be addressed by design, or the quantity of interest.

Motivation for this work: Crime spillovers across streets from policing experiment in Medellin, Colombia.

Medellin application



unit = street; *treatment* = intensified policing; *outcome* = crime index.

We will <u>test</u> whether there are spillovers on control streets from nearby treated streets.

Several model-based approaches exist. Typically include regressions of unit outcomes on group/peer treatments and outcomes.

—(Durlauf and Young, 2001); (Brock and Durlauf, 2001); (Jackson, 2010); (Graham, 2008)

A model-based approach has identification and interpretation issues. —(Deaton, 1990); (Manski, 1993); (Boozer and Cacciola, 2001); (Moffit, 2001); (Angrist, 2014)

Design-based approaches have emerged as a robust alternative. They mostly aim to generalize the classical Fisher randomization test. —(Aronow, 2012); (Athey et. al., 2018); (Basse et. al., 2019)

Outline

- Setup and notation
- Olassical Fisher randomization test (FRT)
- FRTs under Interference
- The null exposure graph
- Application in Medellin
- (if time) Backup slides: computation, test power

There is a set $\mathbb{U} = \{1, \dots, N\}$ of N units indexed by i.

Denote:

 $\begin{array}{ll} Z = (Z_1, \ldots, Z_N) \in \{0,1\}^N =: \mathbb{Z} & \text{binary treatment} \\ Y(z) = (Y_1(z), \ldots, Y_N(z)) \in \mathbb{R}^N & \text{potential outcomes under } z \in \mathbb{Z} \\ Z^{\mathsf{obs}} \in \mathbb{Z}, \ Y^{\mathsf{obs}} \in \mathbb{R}^N & \text{observed quantities} \\ Z^*, Y^* & \text{randomization draws} \\ P(Z) \in [0,1] & \text{design, assumed known} \end{array}$

As usual, potential outcomes are assumed to be fixed, and randomness comes only from P(Z).

Fisher randomization test (FRT, 1935)

We start with the simplest "global null" hypothesis of no effect:

$$H_0: Y_i(z) = Y_i(z')$$
, for all $z, z' \in \mathbb{Z}$.

Choose test statistic T = t(y, z) —(e.g., difference in means). **1** $T^{\text{obs}} = t(Y^{\text{obs}}, Z^{\text{obs}}).$ **2** Sample $Z^* \sim P(Z^*)$, store $T_R = t(Y^{\text{obs}}, Z^*).$ **3** p-value = $\mathbb{E} \left[\mathbb{1} \left\{ T_R \ge T^{\text{obs}} \right\} \right].$

Proof of validity:

$$t(Y^{\mathsf{obs}}, Z^*) \stackrel{H_0}{=} t(Y^*, Z^*) \stackrel{d}{=} t(Y^{\mathsf{obs}}, Z^{\mathsf{obs}})$$

—" $T_R \sim T^{\text{obs}}$ (under null)"

Advantages of FRT include:

- Simple and exact. The test is valid in finite samples.
- Minimal assumptions. No model for Y.
- Robust. Same answer under some transformations of *Y*s.

Main critique of FRT:

- Can only test "strong" nulls.
- Only inference in-sample.

Another argument for FRTs (under no interference)

Suppose completely randomized design (half-treated/half-control):

Unit (i)	Assignment (Z_i)	Outcome (Y_i)
1	1	8
2	0	$3 + \epsilon$
3	0	$3-\epsilon$
4	1	8

 Model-based approach: Regress Y_i ~ Z_i. The estimate of "causal effect" is +5, with standard error O(ε).

 \hookrightarrow Standard error estimation is **conflated** with model fit.

 Design-based approach: No significance. We could have observed -5 with same probability, even when there is no effect whatsoever.

Crime spillovers in Medellin

The global null is not useful for crime spillovers.

e.g., what is the effect of a nearby treated street on a control street?

A crime spillover hypothesis

To write the null hypothesis compactly, use a *treatment exposures*:

$$f_i(z) = \begin{cases} \texttt{short}, & z_i = 0, \texttt{dist}_i < 125\texttt{m} \\ \texttt{control}, & z_i = 0, \texttt{dist}_i > 500\texttt{m} \\ \texttt{neither}, & \texttt{otherwise}. \end{cases}$$

where $dist_i = min_{j \neq i:z_i=1} d(j, i)$ = distance to closest treated street.

$$\label{eq:H0} \begin{split} H_0: \ Y_i(z) &= Y_i(z') \text{ for every } i, z, z', \\ \text{ such that } f_i(z), f_i(z') \in \{\texttt{short}, \texttt{control}\}. \end{split}$$

A crime spillover hypothesis

To write the null hypothesis compactly, use a *treatment exposures*:

$$f_i(z) = \begin{cases} \texttt{short}, & z_i = 0, \texttt{dist}_i < 125\texttt{m} \\ \texttt{control}, & z_i = 0, \texttt{dist}_i > 500\texttt{m} \\ \texttt{neither}, & \texttt{otherwise}. \end{cases}$$

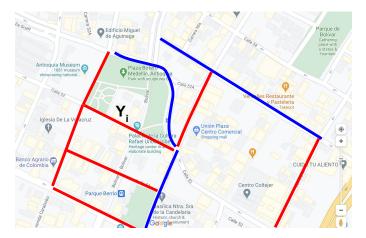
where dist_i = min_{$j\neq i:z_j=1$} d(j,i) = distance to closest treated street.

$$H_0: Y_i(z) = Y_i(z')$$
 for every $i, z, z',$
such that $f_i(z), f_i(z') \in \{\text{short}, \text{control}\}.$

* Can we use the standard FRT?

FRT problems under interference

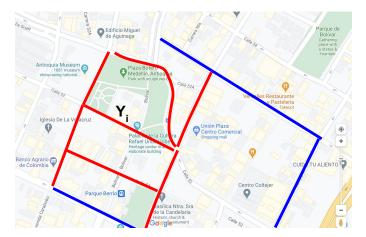
Consider unit *i* and the depicted Z^{obs} below:



Unit *i* is exposed to short range spillovers. Observed outcome is $Y_i^{\text{obs}} = Y_i(\text{short}) - \text{say } Y_i^{\text{obs}} = 2.5$ ("crime score").

FRT problems under interference

Consider a counterfactual treatment assignment Z^* :

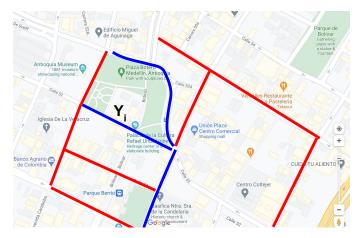


Unit *i* is exposed to control under Z^* .

* Outcome $Y_i(\text{control})$ was not actually observed but can be imputed from Y_i^{obs} under the null—since $Y_i(\text{control}) = Y_i(\text{short})$ under H_0 .

FRT problems under interference

Consider another Z^* in randomization:



Unit *i* is exposed to neither under Z^* . Outcome Y_i (neither) cannot be imputed from Y_i^{obs} . So, we have to condition on subsets of units and

assignments. — Aronow (2012); Athey et. al. (2018); Basse et al (2019)

We denote this conditioning as C = (U, Z), where $U \subset \mathbb{U}, Z \subset \mathbb{Z}$.

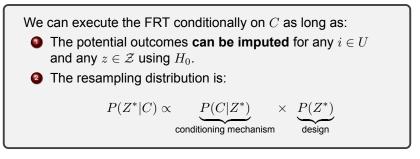
It is generally probabilistic and can be described through a conditioning mechanism, $P(C|Z^{obs})$.

So, we have to **condition** on subsets of units and

assignments. — Aronow (2012); Athey et. al. (2018); Basse et al (2019)

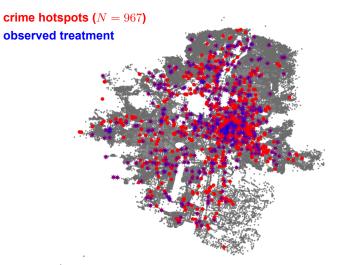
We denote this conditioning as C = (U, Z), where $U \subset \mathbb{U}, Z \subset \mathbb{Z}$.

It is generally probabilistic and can be described through a conditioning mechanism, $P(C|Z^{obs})$.



Requirement #2 is trivial (under our control).

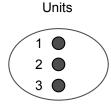
The key challenge is #1. How to ensure this constraint?



* What should P(C|Z) be? —unclear, interference structure is

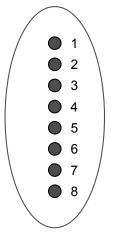
complex.

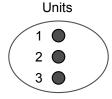
We set all the units one side and all the assignments on the other.



Then we connect (i, z) if unit *i* is exposed to the level specified by the null under *z*.

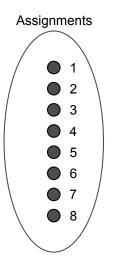
Assignments

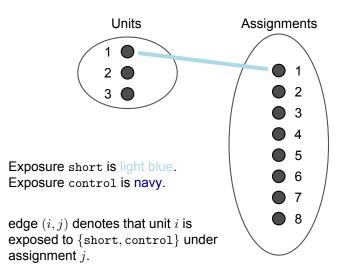


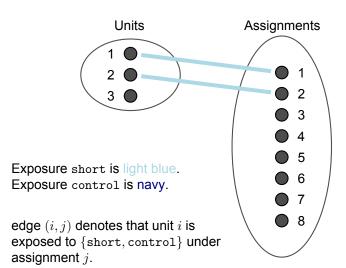


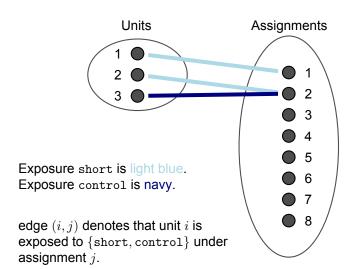
Exposure short is light blue. Exposure control is navy.

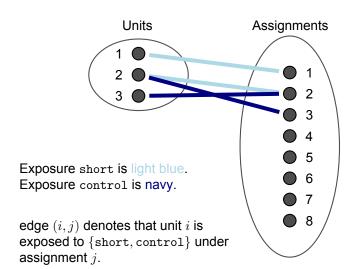
edge (i, j) denotes that unit i is exposed to {short, control} under assignment j.

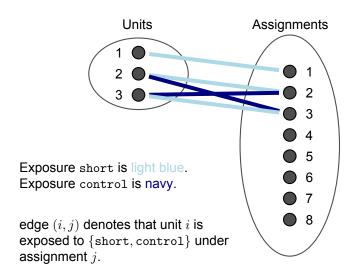


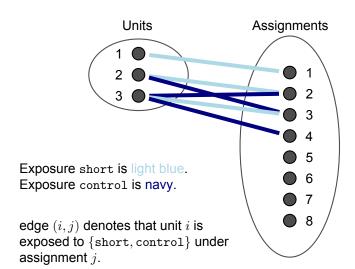


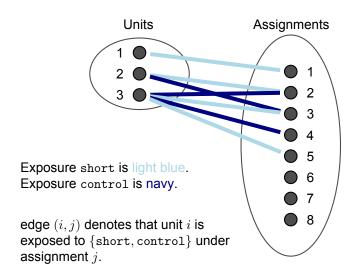


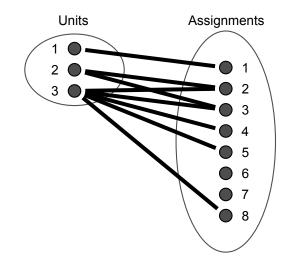


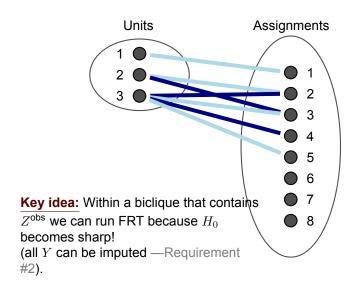






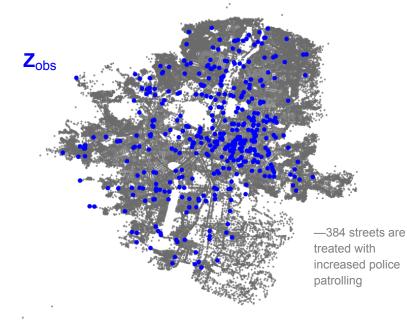




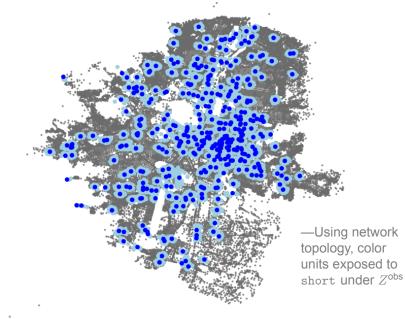


Returning to the map

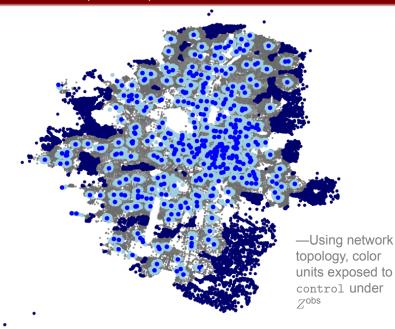
The observed assignment



Short-range spillover units (short)

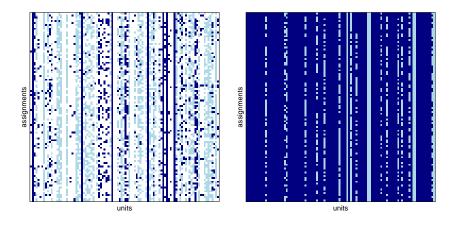


Pure control units (control)



We can remake these pictures for every assignment Z drawn from design $P(Z) \hdots \mbox{...}$

-The output is our null exposure graph!



clique (zoomed-in)

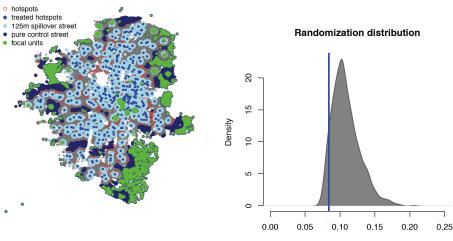
- A null-exposure graph, *G*, is thus uniquely defined given *H*₀ and treatment exposures.
- *H*⁰ is sharp in a biclique of *G*. So, we can run a conditional FRT within a biclique. But which biclique to condition on?
- Our full procedure first produces a biclique decomposition of this graph. Then, conditions on the biclique that contains Z^{obs}.

Statistics of the null-exposure graph:

- #units = 37,055.
- #assignments = 10,000 (design is uniform over this fixed set).
- #edges = 163,836,445.
- density (#edges / #total possible edges) = 44.2%

Statistics of the clique we condition on:

- #units in clique = 3,981.
- #assignments in clique \approx 1,000.



test statistic

Focal units (in green) are in downtown and outskirts. Biclique test **automatically** discovered this pattern.

Zobs

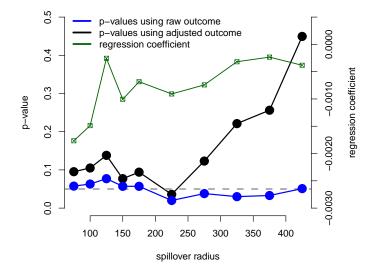


Figure: P-values for clique tests with varying spillover radius.

Experimental design

Suppose a design space $(p_0, p_1) \in [0, 1]^2$ where p_0 =prob. of treatment in city-center, and p_1 prob. of treatment in outskirts.

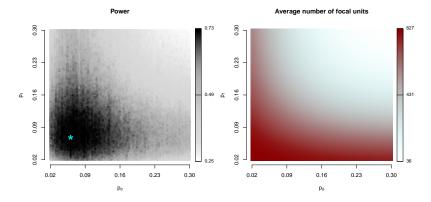


Figure: *Left:* The power of the test for different combinations of p_0, p_1 calculated via simulation. Darker colors denote larger power values, while lighter colors denote smaller power values. *Right:* Null-exposure graph density for different combinations of p_0, p_1 .

Concluding thoughts

- Structure is placed on null hypotheses under interference through exposure functions.
- We represent the problem through the null exposure graph, and we condition on bicliques of this graph.
- Translates the testing problem into graphical operations on the null exposure graph.
- Can study power through properties of the null exposure graph (e.g., density).

Thank you!

(Puelz et. al., 2020) "A Graph-Theoretic Approach to Randomization Tests of Causal Effects Under General Interference"; *arXiv:1910.10862* (under revision).

Power

The size of the clique is crucial for the test power.

Theorem (high level)

For C = (U, Z) let |C| = (n, m) imply that |U| = n and |Z| = m. Suppose:

- (A1) *n* is scale parameter $(1/\sqrt{n})$ for null distribution of test statistic;
- (A2) spillover effect τ is additive;
- (A3) the *m* test statistic values are i.i.d. from the null;
- (A4) the null distribution cdf can be ϵ -approximated by a sigmoid. Then,

$$\mathsf{E}(\mathsf{reject} \mid H_1, |C| = (n, m)) \ge \frac{1}{1 + Ae^{-a\tau\sqrt{n}}} - O(m^{-r}) - \epsilon$$

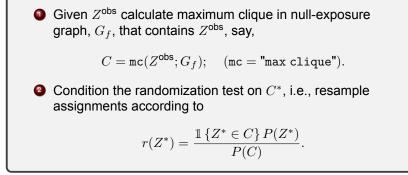
where $a, A > 0, r \in (1/2, 1]$.

Interpretation:

- Number of focal units controls "sensitivity" of the test.
- Number of focal assignments controls maximum power.

A naive test (which doesn't work)

Not all approaches lead to a valid test. For example:



Not all approaches lead to a valid test. For example:

• Given Z^{obs} calculate maximum clique in null-exposure graph, G_f , that contains Z^{obs} , say,

$$C = \operatorname{mc}(Z^{\operatorname{obs}}; G_f); \quad (\operatorname{mc} = \operatorname{"max clique"}).$$

Condition the randomization test on C*, i.e., resample assignments according to

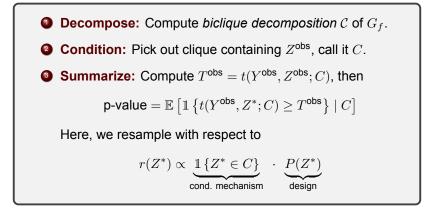
$$r(Z^*) = \frac{\mathbbm{1}\{Z^* \in C\} P(Z^*)}{P(C)}$$

Proof of invalidity:

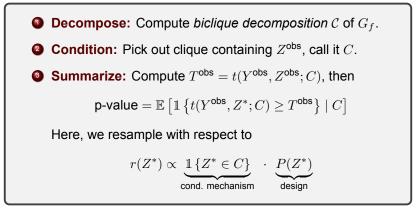
The correct conditional distribution is:

$$P(Z^*|C) = \frac{P(C|Z^*)P(Z^*)}{P(C)} = \frac{\mathbbm{1}\{ \operatorname{mc}(Z^*;G_f) = C\} P(Z^*)}{P(C)} \neq r(Z^*).$$

Main method: Clique-based randomization test



Main method: Clique-based randomization test



Proof of validity:

The correct conditional distribution is:

$$P(Z^*|C) = \frac{P(C|Z^*)P(Z^*)}{P(C)} = \frac{\mathbbm{1}\{C \in \mathcal{C}\}\,\mathbbm{1}\{Z^* \in C\}\,P(Z^*)}{P(C)} = r(Z^*).$$

-first eq. from Bayes; second from definition of conditioning mechanism.

- Finding cliques is NP-hard—Peeters, 2003; Zhang et al, 2014).
- We use the "Binary Inclusion-Maximal Biclustering Algorithm", which uses a "divide and conquer" method to find cliques (Bimax, Prelic et. al, 2006).

-works fine for hundred nodes/thousands edges.

Our method is constructive, still can be optimized.
—i.e., different biclique decompositions will have different power properties, but all are valid.