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Interference

Interference exists when the outcomes of some unit depend on the

treatment of others.

—(Hong and Raudenbush, 2006); (Hudgens and Halloran, 2008); (Aronow, 2012); (Bowers,

2013); (Toulis and Kao, 2013); (Ogburn and VanderWeele, 2014); (Eckles et. al., 2016); (Aronow

and Samii, 2017); (Ogburn et. al., 2017); (Savje et al, 2017); (Athey et. al, 2018), (Basse and Feller,

2018); (Basse et. al., 2019); (Jagadeesan et. al., 2020) (Forastiere et. al., 2020);

Includes spillovers, peer effects, contagion, equilibrium effects, etc.

Pervasive in most social studies. Can be either a nuisance to be

addressed by design, or the quantity of interest.

Motivation for this work: Crime spillovers across streets from policing

experiment in Medellin, Colombia.
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Current approaches

Several model-based approaches exist. Typically include regressions

of unit outcomes on group/peer treatments and outcomes.

—(Durlauf and Young, 2001); (Brock and Durlauf, 2001); (Jackson, 2010);

(Graham, 2008)

Model-based approach has risks due to identification and

interpretation issues.

—(Deaton, 1990); (Manski, 1993); (Boozer and Cacciola, 2001); (Moffit,

2001); (Angrist, 2014)

Design-based approaches have emerged as a robust alternative.

They mostly aim to generalize the classical Fisher randomization test.

—(Aronow, 2012); (Athey et. al., 2018); (Basse et. al., 2019)

The main benefits of randomization-based approaches are

finite-sample validity and robustness.

—Criticism mainly focuses on generalizability of randomization

results.
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Setup and notation

There is a set U = {1, . . . , N} of N units indexed by i.

Denote:

Z = (Z1, . . . , ZN ) ∈ {0, 1}N =: Z binary treatment

Y (z) = (Y1(z), . . . , YN (z)) ∈ RN potential outcomes under z ∈ Z
Zobs ∈ Z, Y obs ∈ RN observed quantities

Z∗, Y ∗ randomization draws

P (Z) ∈ [0, 1] design, assumed known

As usual, potential outcomes are assumed to be fixed, and

randomness comes only from P (Z).
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Some questions of interest

There is no treatment effect when for all i:

H0 : Yi(z) = Yi(z
′), for all z, z′ ∈ Z.

There is no interference when for all i:

H0 : Yi(z) = Yi(z
′), for all z, z′ ∈ Z such that zi = z′i —[aka “SUTVA”].

Suppose units are in social network. There is only neighborhood

interference when for all i:

H0 : Yi(z) = Yi(z
′), for all z, z′ ∈ Z such that zi = z′i and zneighbori = z′neighbori .
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Medellin application

i = “hotspot”; Zi = policing level at unit i; Yi = crime “score”.

We will test whether there are spillovers on control streets from

nearby treated streets.

observed treatment

crime hotspots (N = 967)



8/35

Treatment exposures

One compact to way to represent these null hypotheses is through “treatment

exposures”. For some unit i the exposure under assignment z is given by:

fi(z) : Z → F,

where F = set of possible exposures —e.g., number of “neigh-

bors treated”, “pure control”, etc.

One general class of hypotheses is then:

HF
0 : Yi(z) = Yi(z

′), for all z, z′ ∈ Z such that fi(z), fi(z′) ∈ F ⊆ F

HF
0 is the “global null”.

H
{a,b}
0 is a “contrast hypothesis” —Medellin example.

∩a∈FH
{a}
0 covers the previous examples. Equivalent to:

H0 : Yi(z) = Yi(z
′), for all z, z′ ∈ Z such that fi(z) = fi(z

′).
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Fisher randomization test (FRT, 1935)

We start with the simplest “global null” hypothesis of no effect:

H0 : Yi(z) = Yi(z
′), for all z, z′ ∈ Z.

Choose test statistic T = t(y, z) —(e.g., difference in means).

1 T obs = t(Y obs, Zobs).

2 Sample Z∗ ∼ P (Z∗), store TR = t(Y obs, Z∗).

3 p-value = E
[
1
{
TR ≥ T obs

}]
.

Proof of validity:

t(Y obs, Z∗)
H0= t(Y ∗, Z∗)

d
= t(Y obs, Zobs)

—“TR ∼ T obs (under null)”
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More about the FRT

Advantages of FRT include:

Simple and exact. The test is valid in finite samples.

Minimal assumptions. No model for Y.

Robust. Same answer under some transformations of Y s.

Main critique of FRT:

Can only test strong/uninteresting nulls.

Cannot generalize out of sample.

? How to test a more complex hypothesis, such as “SUTVA”?
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Testing for interference

To test for any interference we can test the “SUTVA” assumption:

H0 : Yi(z) = Yi(z
′), for all z, z′ ∈ Z such that zi = z′i.

The classical FRT runs into trouble here.

To see this, note that in the test we need to have Z∗
i = Zobs

i in order

to be able to use H0 to impute missing outcomes.

This immediately implies that

Z∗ = Zobs. (1)

The randomization distribution is degenerate, and cannot effectively

test H0.

—In other words, H0 is not sharp and so introduces constraints in the

randomization — Equation (1).
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Testing for interference: Resolving the problem

H0 : Yi(z) = Yi(z
′), for all z, z′ ∈ Z such that zi = z′i.

One way to resolve the problem is to execute FRT on subsets of the

units and assignments. —(Aronow, 2012); (Athey et. al., 2018); (Basse et. al., 2019)

Example (Suppose P (Z) is Bernoulli design)

Pick U ⊂ U, |U | = N/2, at random.—[focal units]

Choose test statistic t() that depends only on outcomes from
units in U .

Run FRT by shuffling the treatments only of units in U \ U .

This now works because the support of the randomization distribution

is a large set of assignments:

Z(U) = {z ∈ Z : zi = Zobs
i for all i ∈ U}.

The unconditional FRT did not work because Z(U) = {Zobs}.
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Definition (Conditional FRT / Conditioning mechanism)

Let C = (U,Z), where U ⊆ U and Z ⊆ Z, with distribution P (C|Z). Let
t(y, z;C) denote a test statistic that uses outcomes only from units in U that

can be imputed for all z ∈ Z. Consider the test:

1 C ∼ P (C|Zobs).

2 T obs = t(Y obs, Zobs;C).

3 Sample Z∗ ∼ r(Z∗), store TR = t(Y obs, Z∗;C).

4 p-value = E
[
1
{
TR ≥ T obs

}]
.

This procedure is a conditional FRT. Distribution P (C|Z) is the conditioning

mechanism, and C is the conditioning event.

The conditional FRT is valid (Basse et. al., 2019) as long as:

r(Z∗) = P (Z∗|C) ∝ P (C|Z∗)︸ ︷︷ ︸
conditioning mech.

·P (Z∗)︸ ︷︷ ︸
design

Proof of validity:

t(Y obs, Z∗;C)
H0, C
= t(Y ∗, Z∗;C)

d
= t(Y obs, Zobs;C)

—“TR ∼ T obs (under null conditional on C)”
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Conditioning mechanisms

? The key is therefore the conditioning mechanism, P (C|Z).

r(Z∗) ∝ P (C|Z∗)︸ ︷︷ ︸
conditioning mech.

·P (Z∗)︸ ︷︷ ︸
design

But how to construct one?

(Athey et. al., 2018) considered mechanisms of the form:

P (C = (U,Z)|Z) = P (U) · 1 {Z(U) = Z} ,

for some choice of P (U) (e.g., random sample, “ε-nets”).
—Works in all cases but may lead to loss of power; e.g., when

Z(U) = {Zobs}. Also, generally not a permutation test.

(Basse et. al., 2019) constructed a mechanism under clustered

interference such that:

t(Y, Z;C)
d
= t(Y, Z;πC)

where πC = (πU,Z) denotes permutation of the focal units.
—Simple and good power; but not general.
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The Medellin example

In the Medellin example, define treatment exposures:

fi(z) =


short, zi = 0,disti < 125m

control, zi = 0,disti > 500m

neither, otherwise.

where disti = minj 6=i:zj=1 d(j, i) = distance to closest treated street.

We wish to test H
{a,b}
0 with a = short and b = control, i.e.,

H0 : Yi(z) = Yi(z
′) for every i, z, z′,

such that fi(z), fi(z
′) ∈ {short, control}.

? What should be the conditioning mechanism?
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The Medellin example: What’s a good cond. mechanism?

? The correct kind of conditioning is unclear.

observed treatment

crime hotspots (N = 967)
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The null exposure graph

We set all the units one side and all the assignments on the other.
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Units Assignments

Then we connect (i, z) if unit i
is exposed to the level

specified by the null under z.
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The null exposure graph
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Exposure control is navy.

edge (i, j) denotes that unit i is
exposed to {short, control} under
assignment j.
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The null exposure graph
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a complete bipartite graph

(biclique).
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The null exposure graph
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Key idea:Within a (bi)clique that

contains Zobs we can run the

randomization test because the null

becomes sharp!
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The null exposure graph
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Key idea: Implies the conditioning

mechanism of the form:

P (C|Zobs) = 1
{
Zobs ∈ C

}
.

So C should be unique (full definition

coming soon).

Units Assignments
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Returning to the map
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The observed assignment

Zobs

—384 streets are

treated with

increased police

patrolling



24/35

Short-range spillover units (short)

—Using network

topology, color

units exposed to

short under Zobs
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Pure control units (control)

—Using network

topology, color

units exposed to

control under

Zobs
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We can remake these pictures for every assignment Z drawn

from design P (Z) ...

—The output is our null exposure graph!
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Null exposure graph and clique
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Null-exposure graphs: summary

A null-exposure graph, Gf , is thus uniquely defined given

H0, {fi}.

H0 is sharp in a clique of Gf . So, we can run a conditional

randomization test within a clique. Equivalently, the conditioning

mechanism is:

P (C|Zobs) = 1
{
Zobs ∈ C

}
.

? But which clique to condition on?
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A naive test (which doesn’t work)

Not all approaches lead to a valid test. For example:

1 Given Zobs calculate maximum clique in null-exposure

graph, Gf , that contains Zobs, say,

C = mc(Zobs;Gf ); (mc = "max clique").

2 Condition the randomization test on C∗, i.e., resample

assignments according to

r(Z∗) =
1 {Z∗ ∈ C}P (Z∗)

P (C)
.

Proof of invalidity:

The correct conditional distribution is:

P (Z∗|C) =
P (C|Z∗)P (Z∗)

P (C)
=
1 {mc(Z∗;Gf ) = C}P (Z∗)

P (C)
6= r(Z∗).
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Main method: Clique-based randomization test

1 Decompose: Compute biclique decomposition C of Gf .

2 Condition: Pick out clique containing Zobs, call it C.

3 Summarize: Compute T obs = t(Y obs, Zobs;C), then

p-value = E
[
1
{
t(Y obs, Z∗;C) ≥ T obs

}
| C

]
Here, we resample with respect to

r(Z∗) ∝ 1 {Z∗ ∈ C}︸ ︷︷ ︸
cond. mechanism

· P (Z∗)︸ ︷︷ ︸
design

Proof of validity:

The correct conditional distribution is:

P (Z∗|C) =
P (C|Z∗)P (Z∗)

P (C)
=
1 {C ∈ C}1 {Z∗ ∈ C}P (Z∗)

P (C)
= r(Z∗).

—first eq. from Bayes; second from definition of conditioning mechanism.
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Biclique decomposition

Finding cliques is NP-hard—Peeters, 2003; Zhang et al, 2014).

We use the “Binary Inclusion-Maximal Biclustering Algorithm”,

which uses a “divide and conquer” method to find cliques (Bimax,
Prelic et. al, 2006).

—works fine for hundred nodes/thousands edges.

Our method is constructive, still can be optimized.

—i.e., different biclique decompositions will have different power

properties, but all are valid.
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Power

The size of the clique is crucial for the test power.

Theorem (high level)

For C = (U,Z) let |C| = (n,m) imply that |U | = n and |Z| = m. Suppose:

(A1) n is scale parameter (1/
√
n) for null distribution of test statistic;

(A2) spillover effect τ is additive;

(A3) the m test statistic values are i.i.d. from the null;

(A4) the null distribution cdf can be ε-approximated by a sigmoid.

Then,

E
(
reject | H1, |C| = (n,m)

)
≥ 1

1 +Ae−aτ
√
n
−O(m−r)− ε,

where a,A > 0, r ∈ (1/2, 1].

Interpretation:

Number of focal units controls “sensitivity” of the test.

Number of focal assignments controls maximum power.
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Spatial interference: Medellin data

Statistics of the null-exposure graph:

#units = 37,055.

#assignments = 10,000 (design is uniform over this fixed set).

#edges = 163,836,445.

density (#edges / total #of possible edges) = 44.2%

Statistics of the clique we condition on:

#units in clique = 3,981.

#assignments in clique ≈ 1,000.
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Focal units (in green) are in downtown and outskirts.

Clique test automatically discovers this pattern.
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Concluding thoughts

Structure is placed on null hypothesis through exposure

functions.

New method is presented for testing causal effects under general

interference by representing the problem through the null

exposure graph and conditioning on bicliques of this graph.

Translates the testing problem into graphical operations on the

null exposure graph.

Future work: optimal design.

Thank you!
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Varying radius of short-range effect
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Figure: P-values for clique tests with varying spillover radius.
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