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Interference

Interference exists when the outcomes of some unit depend on the
treatment of others.

—(Hong and Raudenbush, 2006); (Hudgens and Halloran, 2008); (Aronow, 2012); (Bowers,
2013); (Toulis and Kao, 2013); (Ogburn and VanderWeele, 2014); (Eckles et. al., 2016); (Aronow
and Samii, 2017); (Ogburn et. al., 2017); (Savje et al, 2017); (Athey et. al, 2018), (Basse and Feller,
2018); (Basse et. al., 2019); (Jagadeesan et. al., 2020) (Forastiere et. al., 2020);

Includes spillovers, peer effects, contagion, equilibrium effects, etc.

Pervasive in most social studies. Can be either a nuisance to be
addressed by design, or the quantity of interest.

Motivation for this work: Crime spillovers across streets from policing
experiment in Medellin, Colombia.
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Current approaches

Several model-based approaches exist. Typically include regressions
of unit outcomes on group/peer treatments and outcomes.

—(Durlauf and Young, 2001); (Brock and Durlauf, 2001); (Jackson, 2010);
(Graham, 2008)

Model-based approach has risks due to identification and
interpretation issues.

—(Deaton, 1990); (Manski, 1993); (Boozer and Cacciola, 2001); (Moffit,
2001); (Angrist, 2014)

Design-based approaches have emerged as a robust alternative.
They mostly aim to generalize the classical Fisher randomization test.
—(Aronow, 2012); (Athey et. al., 2018); (Basse et. al., 2019)

The main benefits of randomization-based approaches are
finite-sample validity and robustness.
—_Criticism mainly focuses on generalizability of randomization

results.
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Setup and notation

ThereisasetU={1,..., N} of N units indexed by i.

Denote:
Z=(Zy,....,2n) €{0,1}N = Z binary treatment
Y(z) = (Yi(2),...,Yn(2)) € RNV  potential outcomes under z € Z
7% ¢ 7, Y°bs ¢ RNV observed quantities
Z*Y* randomization draws
P(Z) €[0,1] design, assumed known

As usual, potential outcomes are assumed to be fixed, and
randomness comes only from P(Z).
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Some questions of interest

There is no treatment effect when for all ::

Hy : Yi(z) =Yi(2'), forall 2,2’ € Z.

There is no interference when for all i:

Hy :Yi(z) =Yi(2'), forall 2,2’ € Z such that z; = 2] —[aka “SUTVA"].

Suppose units are in social network. There is only neighborhood
interference when for all i:

Hy :Yi(z) = Y;(%'), forall z, 2" € Zsuch that z; = z{ and zneighbor, = z,’]eighbori.
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Medellin application

crime hotspots (N = 967)
observed treatment

i = “hotspot”; Z; = policing level at unit ¢; ¥; = crime “score”.

We will test whether there are spillovers on control streets from
nearby treated streets.
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Treatment exposures

One compact to way to represent these null hypotheses is through “treatment
exposures”. For some unit i the exposure under assignment z is given by:

fZ(Z) 7 — IF,

where F = set of possible exposures —e.g., number of “neigh-

» o«

bors treated”, “pure control”, etc.

One general class of hypotheses is then:

HI :Yi(z) = Yi(¢), forall z, 2’ € Zsuch that f;(2), fi(?') € FCF

@ H{ is the “global null”.
o H{“" is a “contrast hypothesis” —Medellin example.
) maeFHéa} covers the previous examples. Equivalent to:

Hy : Yi(2) = Yi(7), forall z, 2" € Z such that f;(z) = fi(z').
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Fisher randomization test (FRT, 1935)

We start with the simplest “global null” hypothesis of no effect:

Hy:Yi(2) =Yi(7), forall 2,2’ € Z.

Choose test statistic T' = ¢(y, z) —(e.g., difference in means).
o Tobs _ t(yobs Zobs)_
@ Sample Z* ~ P(Z*), store Tr = t(Y°%, Z*).
@ p-value = E [1 {Tg > T°}].
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Fisher randomization test (FRT, 1935)

We start with the simplest “global null” hypothesis of no effect:

Hy:Yi(2) =Yi(7), forall 2,2’ € Z.

Choose test statistic T' = ¢(y, z) —(e.g., difference in means).
o Tobs _ t(yobs Zobs)_
@ Sample Z* ~ P(Z*), store Tr = t(Y°%, Z*).
@ p-value = E [1 {Tg > T°}].

Proof of validity:
t(yobs’ Z*) Ho tY*, 2% 4 t(yobs’ ZObS)

— Ty ~ T° (under null)’
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More about the FRT

Advantages of FRT include:
@ Simple and exact. The test is valid in finite samples.
@ Minimal assumptions. No model for Y.

@ Robust. Same answer under some transformations of Y's.

Main critique of FRT:
@ Can only test strong/uninteresting nulls.

@ Cannot generalize out of sample.
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More about the FRT

Advantages of FRT include:
@ Simple and exact. The test is valid in finite samples.
@ Minimal assumptions. No model for Y.

@ Robust. Same answer under some transformations of Y's.

Main critique of FRT:
@ Can only test strong/uninteresting nulls.

@ Cannot generalize out of sample.

* How to test a more complex hypothesis, such as “SUTVA”?
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Testing for interference

To test for any interference we can test the “SUTVA” assumption:

Hy :Yi(z) = Yi(2'), forall z,2" € Z such that z; = 2/.

The classical FRT runs into trouble here.
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Testing for interference

To test for any interference we can test the “SUTVA” assumption:

Hy :Yi(z) = Yi(2'), forall z,2" € Z such that z; = 2/.

The classical FRT runs into trouble here.

To see this, note that in the test we need to have Z; = Z°s in order
to be able to use H, to impute missing outcomes.

This immediately implies that

7% — Zobs' (1)
The randomization distribution is degenerate, and cannot effectively
test Hy.

—In other words, Hj is not sharp and so introduces constraints in the
randomization — Equation (1).
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Testing for interference: Resolving the problem

Hy : Yi(z) =Yi(7), forall 2,2’ € Z such that z; = 2|.

One way to resolve the problem is to execute FRT on subsets of the
units and assignments. —(Aronow, 2012); (Athey et. al., 2018); (Basse et. al., 2019)

Example (Suppose P(Z) is Bernoulli design)

o PickU c U, |U| = N/2, at random.—[focal units]

o Choose test statistic ¢() that depends only on outcomes from
units in U.

o Run FRT by shuffling the treatments only of units in U\ U.

This now works because the support of the randomization distribution
is a large set of assignments:

ZU)={2€Z: 2 =7 foralli c U}.

The unconditional FRT did not work because Z(U) = {Z°}.

12/35



Definition (Conditional FRT / Conditioning mechanism)

Let C = (U, Z), where U C U and Z C Z, with distribution P(C|Z). Let
t(y, z; C') denote a test statistic that uses outcomes only from units in U that
can be imputed for all z € Z. Consider the test:

Q@ C -~ P(C|z°™).

e Tobs — t(YDbS ZObS’ C)

© Sample Z* ~ r(Z"), store Tr = t(Y°, Z*; O).
Q p-value =E [1{Tr > T°®}].

This procedure is a conditional FRT. Distribution P(C|Z) is the conditioning

mechanism, and C'is the conditioning event.
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Definition (Conditional FRT / Conditioning mechanism)

Let C = (U, Z), where U C U and Z C Z, with distribution P(C|Z). Let
t(y, z; C') denote a test statistic that uses outcomes only from units in U that
can be imputed for all z € Z. Consider the test:

Q@ C -~ P(C|z°™).

e Tobs — t(YDbS ZObS’ C)

© Sample Z* ~ r(Z"), store Tr = t(Y°, Z*; O).
Q p-value =E [1{Tr > T°®}].

This procedure is a conditional FRT. Distribution P(C|Z) is the conditioning
mechanism, and C'is the conditioning event.

The conditional FRT is valid (Basse et. al., 2019) as long as:
r(Z*)=P(Z*|C) x P(C|Z*) -P(Z%)
N—— S~——
conditioning mech.  design
Proof of validity:

t(yobs 7= o2y, 270y L 1(vers, 2o, )

—*“T'r ~ T° (under null conditional on C)’
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Conditioning mechanisms

* The key is therefore the conditioning mechanism, P(C|Z).
r(Z*) < P(C|Z*) -P(Z)
N—— S~——
conditioning mech.  design

But how to construct one?

(Athey et. al., 2018) considered mechanisms of the form:
P(C=(U,2)|Z) = PU)-1{Z(U) = 2},

for some choice of P(U) (e.g., random sample, “e-nets”).
—Works in all cases but may lead to loss of power; e.g., when
Z(U) = {Z°bs}. Also, generally not a permutation test.

(Basse et. al., 2019) constructed a mechanism under clustered
interference such that:

t(Y, 2;C) LY, Z;7C)
where 7C = (wU, Z) denotes permutation of the focal units.

—Simple and good power; but not general. ©ass



The Medellin example

In the Medellin example, define treatment exposures:

short, z; = 0,dist; < 1256m
fi(z) = ¢ control, z = 0,dist; > 500m
neither, otherwise.

where dist; = min;;..,— d(j,i) = distance to closest treated street.

We wish to test H{*"! with a = short and b = control, i.e.,

Hy : Yi(z) =Y;(7) forevery i, z, 2/,

such that f;(z), fi(z") € {short, control}.

* What should be the conditioning mechanism?
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The Medellin example: What's a good cond. mechanism?

crime hotspots (N = 967)
observed treatment

* The correct kind of conditioning is unclear.
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The null exposure graph

We set all the units one side and all the assignments on the other.

Units Assignments

Then we connect (4, z) if unit 4
is exposed to the level
specified by the null under =.

00000000
© N oA WM 2
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The null exposure graph

Units Assignments

Exposure short is .
Exposure control is navy.

00000000
© N o WwN

edge (i, j) denotes that unit i is
exposed to {short, control} under
assignment j.
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The null exposure graph
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The null exposure graph
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The null exposure graph

Units Assignments

w N -
00
—

Notice that {{U2,U3},{A2, A3}} is
a complete bipartite graph
(biclique).

00000000
© N o WwN
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The null exposure graph

Units Assignments

w N -
00
—

Key idea: Within a (bi)clique that
contains Z°° we can run the
randomization test because the null
becomes sharp!

00000000
© N o WwN
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The null exposure graph

Units Assignments

w N -
00
—

Key idea: Implies the conditioning
mechanism of the form:

P(C|2%%) = 1{z° € C}.

So C should be unique (full definition
coming soon).

00000000
© N o WwN
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Returning to the map
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The observed assignment

—384 streets are
treated with
increased police
patrolling
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Short-range spillover units (short)

—Using network
topology, color

units exposed to

short under Z°°s
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Pure control units (control)

—Using network
topology, color
units exposed to
control under
Zobs
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We can remake these pictures for every assignment Z drawn
from design P(7) ...
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We can remake these pictures for every assignment Z drawn
from design P(7) ...

—The output is our null exposure graph!
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Null exposure graph and clique
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Null-exposure graphs: summary

@ A null-exposure graph, G, is thus uniquely defined given

Ho, { fi}-

@ H, is sharp in a clique of G;. So, we can run a conditional
randomization test within a clique. Equivalently, the conditioning
mechanism is:

P(C|12°%) =1{z° € C} .
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Null-exposure graphs: summary

@ A null-exposure graph, G, is thus uniquely defined given

Ho, { fi}-

@ H, is sharp in a clique of G;. So, we can run a conditional
randomization test within a clique. Equivalently, the conditioning
mechanism is:

P(C|12°%) =1{z° € C} .

= But which clique to condition on?
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A naive test (which doesn’t work)

Not all approaches lead to a valid test. For example:

@ Given Z° calculate maximum clique in null-exposure
graph, G, that contains Z°%, say,

C =mc(Z°%,Gy); (mc = "max clique").

@ Condition the randomization test on C*, i.e., resample
assignments according to
1{Z* e C} P(Z*)

7)) =

r(Z7) BC)
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A naive test (which doesn’t work)

Not all approaches lead to a valid test. For example:

@ Given Z° calculate maximum clique in null-exposure
graph, G, that contains Z°%, say,

C =mc(Z°%,Gy); (mc = "max clique").

@ Condition the randomization test on C*, i.e., resample
assignments according to

. 1{Z*eC}P(z")
r(Z*) = B0

. J

Proof of invalidity:

The correct conditional distribution is:

P(C|Z2°)P(Z°) _ 1{nc(Z*;G;) = C} P(Z*)

PO = =55 P(0)

£1(2%).
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Main method: Clique-based randomization test

@ Decompose: Compute biclique decomposition C of Gy.
@ Condition: Pick out clique containing Z°S, call it C.
© Summarize: Compute 7°° = ¢(Y°Ps, Zs: (), then
p-value = E [1 {¢(Y°*, Z*,C) > T°**} | O]
Here, we resample with respect to

r(Z*)x 1{Z* e C} - P(Z")

cond. mechanism design
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Main method: Clique-based randomization test

@ Decompose: Compute biclique decomposition C of Gy.

@ Condition: Pick out clique containing Z°S, call it C.

© Summarize: Compute 7°° = ¢(Y°Ps, Zs: (), then

p-value = E [1 {¢(Y°*, Z*,C) > T°**} | O]
Here, we resample with respect to

r(Z*)x 1{Z* e C} - P(Z")
—_—  ——

cond. mechanism design

\.

Proof of validity:
The correct conditional distribution is:

P(ZIC) = P(cg;)cz)a(z*) _1{Cec} 1;(2;)6 CYP(Z) _ iz,

—first eq. from Bayes; second from definition of conditioning mechanism.
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Biclique decomposition

@ Finding cliques is NP-hard—Peeters, 2003; Zhang et al, 2014).

@ We use the “Binary Inclusion-Maximal Biclustering Algorithm”,
which uses a “divide and conquer” method to find cliques (Bimax,

Prelic et. al, 2006).
—works fine for hundred nodes/thousands edges.

@ Our method is constructive, still can be optimized.
—i.e., different biclique decompositions will have different power
properties, but all are valid.
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Power

The size of the clique is crucial for the test power.

Theorem (high level)
For C = (U, Z) let |C| = (n,m) imply that [U| = n and | Z| = m. Suppose:

(A1) n is scale parameter (1/+/n) for null distribution of test statistic;

(A2) spillover effect T is additive;
(A3) the m test statistic values are i.i.d. from the null;
(A4) the null distribution cdf can be e-approximated by a sigmoid.

Then,
1

E(I’ejeCt | ]:[17 |C| = (n,m)) 2 m — O(m7 ) — €,

where a, A > 0,r € (1/2,1].

Interpretation:
@ Number of focal units controls “sensitivity” of the test.

@ Number of focal assignments controls maximum power.
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Spatial interference: Medellin data

Statistics of the null-exposure graph:
@ #units = 37,055.
@ #assignments = 10,000 (design is uniform over this fixed set).
@ #edges = 163,836,445.
@ density (#edges / total #of possible edges) = 44.2%

Statistics of the clique we condition on:
@ #units in clique = 3,981.
@ #assignments in clique = 1,000.
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Zobs

© hotspots &
e treated hotspots
125m spillover street
® pure control street
+ focal units

Density

20

15

10

Randomization distribution

[ T T T T 1
0.00 0.05 0.10 0.15 0.20 0.25

test statistic

Focal units (in green) are in downtown and outskirts.
Clique test automatically discovers this pattern.
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Concluding thoughts

@ Structure is placed on null hypothesis through exposure
functions.

@ New method is presented for testing causal effects under general
interference by representing the problem through the null
exposure graph and conditioning on bicliques of this graph.

@ Translates the testing problem into graphical operations on the
null exposure graph.

@ Future work: optimal design.
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Concluding thoughts

@ Structure is placed on null hypothesis through exposure
functions.

@ New method is presented for testing causal effects under general
interference by representing the problem through the null
exposure graph and conditioning on bicliques of this graph.

@ Translates the testing problem into graphical operations on the
null exposure graph.

@ Future work: optimal design.

Thank youl!
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Varying radius of short-range effect

0.5

—— p-values using raw outcome
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Figure: P-values for clique tests with varying spillover radius.

35/35



	Intro & Motivation
	


