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1. PROOFS OF THEOREMS AND STATEMENTS 15

1·1. Proof of validity of classical Fisher test

We reproduce the proof of Hennessy et al. (2016) with slight modifications. This proof will provide an
introduction to the proof of the validity of the conditional test that follows.

Proof. We need to show that:

pr(p ≤ α | H0) ≤ α, for all α ∈ [0, 1],

where the probability is with respect to pr(Zobs), and p = pval(Zobs) is defined as 20

p = pr{T (Z | Y obs) ≥ T (Zobs | Y obs)}.

Let U be a random variable with the same distribution as T (Z | Y obs), as induced by pr(Z) and let FU

be its cumulative distribution function. We can then write

p = 1− FU{T (Zobs | Y obs)}.

By definition, under H0 we have Y (Z) = Y (Zobs) for all Z, and so T (Z | Y obs) = T{Z | Y (Z)}. It
follows that, under H0, U has the same distribution as T (Z | Y obs). The randomness in T (Zobs | Y obs)
is induced by the randomness in Zobs. In the testing procedure, Zobs ∼ pr(Zobs). Combining with the 25

above, we see that the distribution of T (Zobs | Y obs) induced by pr(Zobs) is the same as that of U under
H0. We thus have

p = 1− FU(U).

By the probability integral transform theorem, p is uniform, and so pr(p ≤ α | H0) ≤ α. �

1·2. Proof of Theorem 1
The proof of Theorem 1 follows that of the classical Fisher test, with some important modifications. 30
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THEOREM 1. Let H0 be a null hypothesis and T (Z | Y, C) a test statistic, such that T is imputable
with respect to H0 under some conditioning mechanism m(C | Z); that is, under H0, it holds that

T{Z ′ | Y (Z ′), C} = T{Z ′ | Y (Z), C}, (1)

for all Z,Z ′, C, for which pr(Z, C;m) > 0 and pr(Z ′, C;m) > 0. Consider the procedure where we first
draw C ∼ m(C | Zobs), and then compute the conditional p-value,35

pval(Zobs; C) = EZ [I{T (Z | Y obs, C) > T obs} | C], (2)

where T obs = T (Zobs | Y obs, C), and the expectation is with respect to pr(Z | C) = pr(Z, C;m)/pr(C).
This procedure is valid at any level, that is, pr{pval(Zobs; C) ≤ α | C} ≤ α, for any α ∈ [0, 1].

Proof. We need to show that

pr(pC ≤ α | H0, C) ≤ α

for all C such that pr(C | Zobs) > 0, where the probability is with respect to pr(Zobs | C), and pC is40

defined as

pC = pr{T (Z | Y obs, C) ≥ T (Zobs | Y obs, C) | C}.

Fix C. Let U be a random variable with the same distribution as T (Z | Y obs, C) as induced by pr(Z | C)
and let FU be its cumulative distribution function. We can then write:

pC = 1− FU{T (Zobs | Y obs, C)}.

In the procedure, we have Zobs ∼ pr(Zobs) and C ∼ pr(C | Zobs), implying that pr(Zobs, C) > 0. So, by
imputatability of the test statistic in Equation (1) under H0,45

T{Z | Y (Z), C} = T (Z | Y obs, C)

for all Z ∼ pr(Z | C), since this guarantees pr(Z, C) > 0. This means that under H0, U has the same dis-
tribution as T (Z | Y obs, C). The randomness in T (Zobs | Y obs, C) is induced by the randomness in Zobs

conditional on C. Combining with the above, we see that the distribution of T (Zobs | Y obs, C) induced by
pr(Zobs | C) is the same as that of U under H0. We thus have:

pC = 1− FU(U).

By the probability integral transform theorem, pC is uniform and so pr(pC ≤ α | H0, C) ≤ α. �50

1·3. Proof of Theorem 2
For the reader’s convenience we repeat the definitions of the contrast null hypothesis, conditioning

mechanism, and test statistic, which are used in Theorem 2:

H0 : Yi(Z) = Yi(Z
′), i = 1, . . . , N, for all Z,Z ′ for which hi(Z), hi(Z

′) ∈ {a, b}, (3)
m(C | Z) = f(U | Z)g(Z | U , Z), (4)55

T (Z | Y, C) = AVE{Yi | i ∈ U , hi(Z) = a} − AVE{Yi | i ∈ U , hi(Z) = b}, (5)

where C = (U ,Z), and U ,Z are any subsets of units and assignment vectors, respectively and AVE de-
notes the average. The main challenge is to prove that the conditions of the theorem ensure that the test
statistic in Equation (5) is imputable under H0.

THEOREM 2. Let H0 be a null hypothesis as in Equation (3), m(C | Z) be a conditioning mechanism60

as in Equation (4), and T be a test statistic defined only on focal units, as in Equation (5). Then, T is
imputable under H0 if m(C | Z) > 0 implies that Z ∈ Z , and for every i ∈ U and Z ′ ∈ Z that

hi(Z
′) ∈ {a, b}, if hi(Z) ∈ {a, b}, (6)

hi(Z
′) = hi(Z), if hi(Z) /∈ {a, b}. (7)

If T is imputable the randomization test for H0 as described in Theorem 1 is valid at any level α.65
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Proof. For a conditioning event C = (U ,Z), suppose that m(C | Z) > 0 implies that Z ∈ Z and that:

for all i ∈ U , Z ′ ∈ Z,

{
hi(Z

′) ∈ {a, b} if hi(Z) ∈ {a, b},
hi(Z

′) = hi(Z) if hi(Z) 6∈ {a, b}.

Now let Z,Z ′, C be such that pr(Z, C;m) > 0 and pr(Z ′, C;m) > 0. By definition of a conditioning
mechanism, this implies that m(C | Z) > 0 and m(C | Z ′) > 0. It follows that Z ∈ Z and Z ′ ∈ Z . Now
take i ∈ U . If hi(Z ′) 6∈ {a, b}, then, by assumption, hi(Z) = hi(Z

′) since Z,Z ′ ∈ Z . And so by Equa-
tion (5) of the main paper, we have that Yi(Z ′) = Yi(Z). If instead hi(Z ′) ∈ {a, b}, then hi(Z) ∈ {a, b} 70

and so under the null hypothesis Yi(Z ′) = Yi(Z), as well. Therefore, we proved that YU (Z ′) = YU (Z),
where YU (Z) denotes the subvector of outcomes of units in U under assignment vector Z. Since the
test statistic, T (Z | Y, C), is defined only on YU , the subvector of outcomes of units in U , it follows that
T{Z ′ | Y (Z ′), C} = T{Z ′ | Y (Z), C}, and so T is imputable. �

1·4. Proof of Proposition 1 75

PROPOSITION 1. Consider the following testing procedure:

1. In control households (Wj = 0), choose one unit at random. In treated households (Wj = 1),
choose one unit at random among the non-treated units (Zi = 0).

2. Compute the distribution of the test statistic in Equation (5) induced by all permutations of expo-
sures on the chosen focal units, using a = (0, 0) and b = (0, 1) as the contrasted exposures. 80

3. Compute the p-value.

Steps 1-3 outline a procedure that is valid for testing the null hypothesis of no spillover effect, Hs
0 .

Proof. Define

U(Z) = {U ∈ U : ZiI(i ∈ U) = 0, i = 1, . . . , N, and
∑
i

I(i ∈ U)Rij = 1, for every household j}.

In words, U(Z) is the set of all subsets of units for which no unit in the subset is treated under Z, and
each household has exactly one unit in the subset. Step 1 of the procedure in Proposition 1 chooses focals 85

according to conditioning mechanism m(C | Z) = f(U | Z)g(Z | U , Z), where we define

f(U | Z) = Unif{U(Z)}, (8)
g(Z | U , Z) = I[Z = {Z ′ : hi(Z

′) ∈ {(0, 0), (0, 1)} for all i ∈ U}]. (9)

That is, f(U | Z) is uniform on U(Z) and g is degenerate on the set of assignments for which all units in
U are either in control or exposed to spillovers. In what follows, we fix a conditioning event C = (U ,Z). 90

LetH = H(Z) ∈ {0, 1}K denote the exposure of focal units under Z, where we use 0 for control and 1
for spillovers. Also, letW = W (Z) ∈ {0, 1}K denote the household assignment under assignment vector
Z. Since there is one focal per household and household assignment determines the exposure of a focal,
H and W are equal almost surely:

H(Z) = W (Z), for all Z, and so we can write H = W, almost surely.

For any Z,Z ′ ∈ Z , it holds that 95

g(Z | U , Z) = g(Z | U , Z ′).

This follows from definition of g in Equation (9) since g(Z | U , Z) ≡ g(Z | U) does not depend on Z
given a fixed U ; note that U depends on Z itself, but still g does not depend on Z if U is given.

For any w ∈ {0, 1}K , it holds that:∑
Z:W (Z)=w

f(U | Z)pr(Z |W = w) = const.
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To see this, first note that pr(Z |W ) =
∏K
k:Wk=1 1/nk, where nk is the number of units in the household.

Furthermore,100 ∑
Z:W (Z)=w

f(U | Z) =
∏

k:Wk=0

1/nk.

Therefore, ∑
Z:W (Z)=w

f(U | Z)pr(Z |W = w) =
∏
k

1/nk = const.

Actually this is equal to the marginal probability of the focal set, pr(U).
We now put things together and prove that the conditioning mechanism yields a randomization distri-

bution that is uniform in its support. Fix a conditioning event C = (U ,Z). Then,

pr(H | C) = pr(W | C) [from Step 1]105

∝ pr(C |W )pr(W )

∝
∑
Z

pr(C, Z |W )pr(W )

∝
∑

Z:W (Z)=W

pr(C | Z)pr(Z |W )pr(W )

∝
∑

Z:W (Z)=W

f(U | Z)g(Z | U , Z)pr(Z |W )pr(W ) (10)

∝ g(Z | U)pr(W )
∑

Z:W (Z)=W

f(U | Z)pr(Z |W )110

∝ pr(W )

=

(
N

N1

)−1
. (11)

From the definition of the test statistic:

T (Z | Y, C) = T (Z ′ | Y, C) if H(Z) = H(Z ′).

Therefore, we can write T (Z | Y, C) ≡ T (H | Y, C). From the above, we know that the conditional dis-
tribution of the focals’ exposure under the particular conditioning mechanism is a permutation of their115

exposures under Zobs, as prescribed by the testing procedure of Proposition 1. This is sufficient for valid-
ity since the test statistic is in fact a function of H .

2. ADDITIONAL DISCUSSION OF ALTERNATIVE METHODS

2·1. Equivalence of tests from Athey et al. (2017) and Aronow (2012) for two-stage designs

The tests described by Athey et al. (2017) and Aronow (2012) coincide for testing spillover effects,Hs
0 ,120

in our two-stage randomized setting. We will show that the method of Aronow (2012) is equivalent to our
procedure, with f(U | Z) = f(U). Briefly, the method of Aronow (2012) can be summarized as follows:

1. Draw a set of units U ⊂ U, uniformly at random, as in Athey et al. (2017).
2. Compute the p-value by using the conditional randomization distribution pr(Z | U , ZU = Zobs

U ),
where ZU is the subvector of Z that is restricted to the units in U .125

The conditional randomization distribution is therefore equal to:

pr(Z | U , ZU = Zobs
U ) ∝ pr(U , ZU = Zobs

U | Z)pr(Z) ∝ pr(ZU = Zobs
U | U , Z)pr(U | Z)pr(Z)

= I(ZU = Zobs
U )pr(U)pr(Z).
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Now, consider a conditioning event C = (U ,Z) from a mechanismmf (C | Z) = f(U)g(Z | U , Z), where
according to Equation (11) in the main paper is degenerate on the set: 130

Z = [Z ′ : hi(Z
′) = (1, 1) if hi(Zobs) = (1, 1) and hi(Z ′) ∈ {(0, 0), (0, 1)} otherwise, for all i ∈ U ].

(12)

Under this definition and the setting of spillover effects, for every unit i ∈ U in the focal set and every
assignment vector Z ′ ∈ Z in the test, we will have either Z ′i = 0 if Zobs

i = 0 or Z ′i = 1 if Zobs
i = 1. Thus,

if Z ′ ∈ Z it follows that Z ′U = Zobs
U . Suppose the reverse is true, that is, Z ′U = Zobs

U . Consider unit i in the
focal set for which Zobs

i = 1. Then, Z ′i = 1 as well, and so hi(Z ′) = hi(Z
obs) for such units. Consider 135

unit i in the focal set for which Zobs
i = 0. Then, Z ′i = 0 as well, and so hi(Z ′) =∈ {(0, 0), (0, 1)}, by

definition of exposures. Thus, if Z ′U = Zobs
U it follows that Z ′ ∈ Z . Therefore, the two statements are

equivalent, and the conditioning mechanism with f(U | Z) = f(U) will yield the same test as in Athey
et al. (2017) and Aronow (2012).

2·2. When the test of Athey et al. (2017) is a permutation test 140

The method of Athey et al. can be cast in our framework, where f(U | Z) = f(U) , i.e., the selection of
focals does not depend on the observed assignment, and where the randomization distribution, pr(Z | C),
is uniform over the set Z defined in Equation (12). We denote by U eff(Z) = {i ∈ U : Zi = 0}. We denote
by Hi = hi(Z) the exposure of unit i under assignment vector Z.

First, notice that U eff(Z) = U eff(Zobs), for every Z ∈ Z . Now, consider unit i ∈ U eff(Zobs). We have: 145

pr(Hi = (1, 0) | Z ∈ Z) = pr(Zi = 0,W[i] = 1 | Z ∈ Z)

=
pr(Zi = 0 |W[i] = 1)pr(W[i] = 1)

pr(Z ∈ Z)

=
(ni − 1)/ni

(
N
N1

)
pr(Z ∈ Z)

∝ ni − 1

ni
.

We thus have the constraint that for all Z ∈ Z: 150∑
i∈U eff(Z)

I{Hi(Z) = (1, 0)} = N eff
1 (Zobs).

In words, the number of exposed units is constant for all Z ∈ Z . Putting it all together, we see that
P (H | Z ∈ Z) is such that:

1.
∑
i∈U eff I{Hi = (1, 0)} = N eff

1 .
2. For all i ∈ U eff, pr{Hi = (1, 0) | Z ∈ Z(U , Zobs)} ∝ (ni − 1)/ni. � 155

This result implies that the method of Athey et al. (2017) can be implemented as a permutation test only
when the households are of equal sizes. This is not true in our application, and not expected to be true
more generally, and thus poses computational challenges in implementing the test of Athey et al. (2017).

3. SIMULATIONS AND ANALYSIS DETAILS

3·1. Simulations 160

We compare the power of the test we proposed in the previous section, which chooses the focal units
conditionally on Zobs, to that of the test in Athey et al. (2017) which chooses the focals unconditionally
of Zobs. We use the term “unconditional focals” to describe that approach, but we note that this could en-
compass selection of focals based on existing covariate information, such as a network between units. For
example, Athey et al. (2017) propose an approach where after a unit is selected as focal subsequent focal 165
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units are selected beyond a certain distance to the initial focal unit; this is known as the ε-net approach.
Such approaches are still unconditional to the observed treatment assignment, Zobs.

Figure 1 illustrates the potential power gains, by considering the extreme case of K = 500 households
of equal size n = 50 with K1 = 250 treated households, and focusing on the power of the test of no
primary effect Hp

0 . If we are interested in testing the no spillover effect hypothesis Hs
0 , the expected170

difference in the number of effective focal units between our test and the test of Athey et al. (2017)
decreases with n. In the case of the no primary effect hypothesis Hp

0 , the difference increases with n. This
phenomenon is illustrated in Figure 2.

3·2. Details of analysis: covariate adjustment

In all the analyses in the paper, covariates where taken into account via the same model-assisted ap-175

proach used in Section 7 and Section 9.2 of Basse & Feller (2017). Briefly, we use a holdout set to estimate
the parameter of a regression, then we use those estimators parameters to obtain predicted values {Ŷi}i
for the outcomes in our sample and compute the residuals êi = Y obs

i − Ŷi. We then apply the conditional
testing methodology to the residuals, instead of the original potential outcomes; in that way, the residuals
can be thought of as transformed outcomes. Note that this approach is similar to that used by Rosenbaum180

et al. (2002).

3·3. Details of analysis: confidence intervals

We ran an additional analysis comparing the size of confidence intervals for our method and for that of
Athey et al. (2017). Specifically, for each of Hs

0 and Hp
0 , we drew 100 focal sets using our method, and

100 using the method of Athey et al. (2017), and computed the associated confidence intervals, obtained185

by inverting sequences of Fisher randomization tests (Rosenbaum et al., 2002). Figure 3 summarizes the
results. We see that our method leads to smaller confidence intervals compared to the method of Athey
et al. (2017), and that the difference is larger for the primary effect than for the spillover effect.

3·4. Details of analysis: point estimates

Point estimates are obtained using a variant of the Hodges-Lehmann estimator (Hodges Jr & Lehmann,190

1963). Specifically, for a conditioning event C, we numerically solve the equation E(T | C, HP
τ ) = T obs,

where HP
τ is the null hypothesis Yi(1, 1) = Yi(0, 0) + τ , by considering a grid of values for τ , and com-

puting the expectation of the null distribution of T under the hypothesis HP
τ and keeping the value τ̂ of τ

that is closest to T obs.
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Fig. 1: Power of the test of no primary effect obtained with choice of focals unconditional to the observed
assignment (Athey et al. (2017)) versus conditional choice, for different true values of the true primary
effect.
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Fig. 2: Power of the two methods for testing the null hypotheses of no primary effect, on the left, and no
spillover effect, on the right, as a function of household size ni.
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Fig. 3: Size of the confidence intervals for the primary and spillover effects obtained by the two methods.

3·5. Details of analysis: results for testing HP
0 195

The median value of the Hodges-Lehmann for the primary effect is approximately equal for both
choices of functions f and is approximately equal to −1.5 days, with associated confidence interval
[−2.2, 0.75] for our method, and [−2.3,−0.8] for the method of Athey et al. (2017). The average length of
confidence intervals obtained with our method is 1.4 days, versus 1.6 days for the method of Athey et al.
(2017). The fraction of focals leading to a p-value below 0.05 is 100% in our case, based on a Monte-Carlo 200

estimate from 100 replications, versus 92% for the method in Athey et al. (2017).
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4. COMPARISON OF POWERS OF TESTS

4·1. Model, p-values and power

In this section, we make an approximate theoretical analysis of the power of our test and the power of
the test by Athey et al. (2017). Our analysis is performed under two approximations. First, in the context205

of classical Fisher randomization tests, we argue that, in general, tests that are balanced and use more units
are more powerful. So, balance and size of treatment arms can be used as a proxy for the power of the
test. Second, we argue that since in the two-stage randomization case, our test and the test in Athey et al.
(2017) can be conceived as classical Fisher randomization tests run on the focal units, the aforementioned
power approximation for the classical Fisher randomization test applies.210

Consider a classical Fisher randomization test, with complete randomization where N1 out of N units
are treated. Let p = N1/N . Suppose that that the true effect is constant additive τ , and that we test for the
null of no effect H0. In order to give concrete analytical heuristics, we consider a model for the potential
outcomes and focus on asymptotics; see also Lehmann & Romano (2006) for this approach:

Yi(Zi) ∼ τZi +N (µ, σ2).

As mentioned, we will focus our argument on asymptotic heuristics. Denote by V = var(T | Y obs, H0)215

the randomization variance of the test statistics conditional on Y obs, and assuming H0 is true. We have,
for large N :

V =
1

N

[
σ2

p(1− p)
+ τ2

]
.

Denote by V obs the variance of the test statistic V obs = var(T ). We have, for large N ,

V obs = V − τ2

N
,

and so by applying the appropriate CLT’s, we have:

T

V 1/2
≈ N (0, 1),

T obs − τ
(V obs)1/2

≈ N (0, 1).

Note the application of the CLT is heuristic here, and some regularity conditions are required. We can220

then obtain an approximation of the distribution of a one-sided p-value for large N:

pval = pr(T ≥ T obs)

≈ 1− Φ

(
T obs

V 1/2

)
,

using the asymptotics from above. We can then verify that:

T obs

V 1/2
=

T obs − τ
(V obs)1/2

(1− C)1/2 + (NC)1/2225

≈W (1− C)1/2 + (NC)1/2,

where W ∼ N (0, 1) and C = τ2[σ2/{p(1− p)}+ τ2]−1 and so :

pval = 1− Φ(W (1− C)1/2 + (NC)1/2). (13)

We can use the approximation of Equation (13) to deal with the power. For α ∈ [0, 1], the power of the
test at level α will be

βα = pr(pval ≤ α),
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but we verify that 230

pval ≤ α ⇔ W ≥ Φ−1(1− α),−(NC)1/2

(1− C)1/2

and so the power of the test will be approximately:

βα = 1− Φ

(
Φ−1(1− α)− (NC)1/2

(1− C)1/2

)
. (14)

4·2. Comparing classical tests

We are interested in comparing tests with different proportions p of treated units, and with different
numbers N of units. We will denote these quantities by N (1) and N (2) for the number of units, and p(1) 235

and p(2) for the proportions. Let β(1) and β(2) be the associated powers. Finally, notice that:

β(1) ≤ β(2) ⇔ Φ−1(1− α)− (N (1)C(1))1/2

(1− C(1))1/2
≥ Φ−1(1− α)− (N (2)C(2))1/2

(1− C(2))1/2

⇔ γ(1) ≥ γ(2)

where γ(1) = {Φ−1(1− α)− (N (1)C(1))1/2}/{(1− C(1))1/2}
Suppose that both tests have the same number of units N (1) = N (2) = N , but different fractions of 240

treated units p(1) 6= p(2). We have

γ(1) − γ(2) = N1/2

(
(C(2))1/2

1− (C(2))1/2
− (C(1))1/2

1− (C(1))1/2

)
+

(
Φ−1(1− α)

(1− C(1))1/2
− Φ−1(1− α)

(1− C(2))1/2

)
→ N1/2

(
(C(2))1/2

1− (C(2))1/2
− (C(1))1/2

1− (C(1))1/2

)
and so for large N ,

γ(1) − γ(2) ≥ 0⇔ (C(2))1/2

1− (C(2))1/2
− (C(1))1/2

1− (C(1))1/2
≥ 0 245

⇔ p(1)(1− p(1)) ≤ p(2)(1− p(2))

⇔ |p(1) − 1

2
| ≥ |p(2) − 1

2
|.

So in conclusion:

β(1) ≤ β(2) ⇔ |p(1) − 1

2
| ≥ |p(2) − 1

2
|

which, in words, means that the balanced test has more power asymptotically.
Suppose that N (1) 6= N (2) but that the fractions of treated units in each test is identical. That is, p(1) = 250

p(2) = p. The immediate consequence is that C(1) = C(2) = C, and so:

γ(1) − γ(2) =
C1/2

1− C1/2

(
(N (2))1/2 − (N (1))1/2

)
,

and so:

β(1) ≤ β(2) ⇔ N (1) ≤ N (2),

which in words means that the test with more units has more power asymptotically.

4·3. Comparing the power of our test with that of Athey et al. (2017)

If we restrict our attention to the special case where all households have equal size ni = n, then both 255

our method and the method of Athey et al. (2017) can be seen as classical Fisher randomization tests
applied on a set of ”effective” focal units, where the set of ”effective focals” is always at least as large
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with our method as in the method of Athey et al. (2017), and is always balanced if the initial assignment
pr(Z) is balanced. We can then leverage the result of Section 4·2 to argue heuristically that for classical
Fisher randomization tests, larger and more balanced is generally better, and so we expect our method to260

lead to more powerful test. This has been confirmed in the simulations of Section 3·1 and in the analysis.

4·4. Comparison with unconditional focal selection under a different design

In this section, we perform an analysis outside of the two-stage design setting to illustrate the generality
of our framework. We assume there is a network between units such thatNi denotes the neighborhood of
unit i. As in the two-stage setting, we will show that being able to condition on the observed treatment265

assignment, which is possible in our framework, can lead to better randomization tests.
We consider a network between units and the following exposure functions:

hi(Z) =


a if Zi = 1,

b if Zi = 0,
∑
j∈Ni

Zj < d,

c if Zi = 0,
∑
j∈Ni

Zj > d,

and assume that N1 units are treated completely at random in the network, and that we wish to test the
null hypothesis:

H0 : Yi(Z) = Yi(Z
′), i = 1, . . . , N, for all Z,Z ′ : hi(Z), hi(Z

′) ∈ {b, c}.

This example is very different from the two-stage randomization setting considered in the main text,270

but there is one commonality: the units who received treatment are useless for testing H0, and so it is
wasteful to include them in the focal set. It is easy to verify that if focals are chosen completely at random,
the distribution of the effective number of focals is |EFF(U)| ∼M − Hypergeom(N,N1,M), and so the
expected number of focal units is E{|EFF(U)|} = M −M(N1/N). In the case where half the units are
treated, that is N1 = N/2, we have:275

E{|EFF(U)|} =
M

2
,

so in effect we lose half of the focal units. Choosing focals unconditionally but based on ε-nets would be
better than choosing the focals completely at random but would not solve the fundamental reason why
power is lost. Moreover, if choosing focals based on ε-nets is helpful, then it could always be combined
with conditioning on the observed assignment to yield an even more powerful test.

To illustrate our framework in this setting, we could use following procedure:280

1. Draw Z, completely at random with N1 treated units, and N0 control units.
2. Choose M focal units at random among the N0 units with Zi = 0. Let U be the set of focal units.
3. Draw Z ′ ∼ pr(Z ′ | U) as follows. Set Z ′i = 0 for all i ∈ U . Then choose N0 −M units at ran-

dom among the N −M non-focal units, and set Z ′i = 0 for these units. Finally, set Zi = 1 for the
remaining N1 units.285

We claim that the abovementioned procedure in Step 3 samples indeed from the correct conditional
randomization distribution.

Proof. By definition of the procedure in Steps 2 and 3, it holds that pr(Z ′) ∝ 1 if
∑
i Z
′
i = N1, and

also pr(U | Z ′) = const., if |U| = M and Z ′i = 0 for every i ∈ U . Therefore, pr(Z ′ | U) = Unif(Z(U)),
where Z(U) = {Z : for all i ∈ U , Zi = 0 and

∑
i Zi = N1}. Which is what step 3 does. �290

Note that in this case our approach does not lead to a permutation test; and neither does the method
of Athey et al. Nevertheless, it leads to a procedure that is easily implementable and that uses more
information than that of Athey et al.
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5. TESTING THE NULL HYPOTHESIS OF NO PRIMARY EFFECT

The paper focused on testing the null hypothesis of no spillover effects HS
0 . In this section, we briefly 295

give equivalent results for testing the null hypothesis of no primary effect HP
0 . We omit the proofs, since

they follow exactly the same outlines as the proof for HS
0 . A simple choice of f function for testing the

null hypothesis of no primary effect is

f(U | Z) = Unif{U(P )(Z)},

where

U(P )(Z) = {U ∈ U : Zi = 1⇒ i ∈ U , for all i ∈ U and
∑
i

I(i ∈ U)Rij = 1, for every household j}.

If applied to Theorem 2, this choice of f leads to the following procedure, which mirrors that of Proposi- 300

tion 1:

1. In control households, Wj = 0, choose one unit at random. In treated households, Wj = 1, choose
the treated unit as focal.

2. Compute the distribution of the test statistic Equation (5) induced by all permutations of exposures
on focal units, using a = (0, 0) and b = (1, 1) as the contrasted exposures. 305

3. Compute the p-value.

This procedure is valid conditionally and marginally for testing HP
0 .

6. ADDITIONAL NOTES ON THE CHOICE OF EXPOSURE MAPPING h()

6·1. More complex exposure mappings

The class of null hypotheses that our method is designed to test is summarized in Equation (7) of our 310

manuscript, reproduced below for convenience:

H0 : Yi(Z) = Yi(Z
′), (i = 1, . . . , N) for all Z,Z ′ for which hi(Z), hi(Z

′) ∈ {a, b}, (15)

for some exposure function h, the choice of which is limited by a few theoretical and practical consid-
erations. The only strong theoretical constraint implicit in Equation (7) of the manuscript is that the two
exposures a and b being contrasted must be well defined for all units under consideration. For instance,
in the test of no spillovers Hs

0 , the two exposures contrasted are the spillover exposure (1, 0), and the 315

control exposure (0, 0), which are well defined for all units. If we had households with a single individual,
then the exposure (1, 0) would not be defined for that unit and the null hypothesis of Equation (7) would
consequently be ill-posed if it included that unit.

Still, the formulation in Equation (15) provides enough flexibility to test a wide variety of null hypothe-
ses. Here, we illustrate with a couple of short but representative examples on network interference. Similar 320

to Athey et al. (2017), let Gij = 1 if units i and j are neighbors in the network, and Gij = 0 otherwise.
By convention, Gii = 0 for all i.

Suppose we want to test spillovers on control units from first-order neighbors. Then, we could define:

hi(Z) =


a if Zi = 1,

b if Zi = 0,
∑
j GijZj > 0,

c if Zi = 0,
∑
j GijZj = 0.

Now testing the hypothesis in Equation (15) contrasting the exposures b and c defined above will test
whether there are spillovers on control units. 325

As another example, suppose we want to test spillovers on control units from up to second-order neigh-
bors. Let Hij = 1 if i and j are second-order neighbors but not first-order neighbors, so Gij = 0. Then,
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we could define:

hi(Z) =


a if Zi = 1,

b if Zi = 0,
∑
j(Gij +Hij)Zj > 0,

c if Zi = 0,
∑
j(Gij +Hij)Zj = 0.

Now testing the hypothesis in Equation (15) contrasting the exposures b and c defined above will test
whether there are spillovers on control units from first-order or second-order neighbors. We could also330

test the hypothesis that there are no second-order spillovers without putting constraints on first-order
spillovers. For that test, we could define:

hi(Z) =


a if Zi = 1,

b if Zi = 0,
∑
j GijZj > 0,

c if Zi = 0,
∑
j GijZj = 0,

∑
j HijZj > 0,

d if Zi = 0,
∑
j(Gij +Hij)Zj = 0.

Now testing the hypothesis in Equation (15) contrasting the exposures c and d defined above will test
whether there are spillovers on control units from second-order neighbors only. We can follow similar
approaches for testing higher than second-order spillovers.335

We now consider an example closer to the scenario of our application. Consider the same design as in
our manuscript, but assume that all households have n = 3 units. We are interested in testing whether an
untreated unit in a treated household receives a different spillover if the eldest of its two siblings is treated
compared to the spillover received if the youngest of its two siblings is treated.

In order to test this null hypothesis, we need to consider a more complex exposure mapping than the
one in our manuscript. Let Ei ∈ {0, 1} be the treatment assignment of the eldest of unit i’s two siblings,
and consider the exposure mapping:

hi(Z) = (Hi, Zi, Ei).

Each unit now has four potential outcomes:340

Yi(Z) ∈ {Yi(1, 1, 0), Yi(0, 0, 0), Yi(1, 0, 1), Yi(1, 0, 0)},

the other combinations being impossible. With this exposure mapping the null hypothesis of no differential
spillover effect from the eldest sibling can be written as:

H0 : Yi(1, 0, 1) = Yi(1, 0, 0) (i = 1, . . . , N).

6·2. Exposure mappings and the choice of test statistic

The choice of test statistic T is related to the choice of exposure mapping h to the extent that it provides
a good estimate of the differential effect between exposures a and b in Equation (15). Furthermore, if we345

have some prior belief about the potential outcomes and the interference structure, it can be incorporated
in the test statistic. Athey et al. (2017) have a nice and insightful discussion about possible test statistics
in Section 5.3 of their paper, which is applicable in our setting as well.
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