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Periodic extinctions? (Raup and Sepkoski, 1986)
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Introduction

The estimation of periodicity is a fundamental task in science; e.g., astrophysics/astronomy,
paleontology, biology, climate science.

The problem is deceptively simple, however. Standard methods require

equal or i.i.d. spacings between observation times, and that

common estimators —e.g., periodogram peaks— are consistent and asymptotically
normal.

In practice, these conditions are unrealistic: observation times exhibit patterns while common
estimators can substantially deviate from normality.

It is unclear how inference should proceed in such settings.
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Motivation

Our work is motivated by the analysis of radial velocity data in exoplanet detection.

High-resolution observatories have made ground-breaking exoplanet detections, including “51
Pegasi b” (Mayor and Queloz, 1995) awarded the 2019 Nobel Prize in Physics.

Recently, a potential discovery was announced in our immediate stellar neighborhood of
α Centauri (Anglada-Escude et.al., 2016). This is astonishing as it suggests that exoplanets may be
ubiquitous.

Despite these successes, the underlying statistical methods need improvement (or complete
overhaul). False discoveries are not uncommon!
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Our contributions

Methodological contribution: We develop a set identification method to infer hidden

periodicity, θ∗. The idea is to construct a confidence set, Θ1−α, with correct finite-sample
coverage:

pr(θ∗ ∈ Θ1−α) ≥ 1− α. (1)

This construction does not require normality, not even consistency, of the underlying statistic.
It also does not require normality or i.i.d. errors, and can seamlessly work with equally or
unequally spaced data.

Practical contribution: Our method gives sharp inference on the confirmed exoplanets in our
sample. However, it raises doubts for other recent —yet unconfirmed— exoplanets.

Finally, we suggest ways to improve the observation design for sharper inference, which could
help with future discoveries.

Potential downside: our method is (quite) computationally intensive. But it can be parallelized.
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Outline

1 Background. Detection and estimation of periodicity. Challenges.

2 Main method (parametric).

3 Application: Exoplanet detections.

4 Improving observation designs.

5 (if time): Nonparametric method. Details

6 (if time): Implications for statistical inference. Covid-19 application. Details
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Exoplanet detection in practice

An planet orbiting a star affects the star’s
emitted light (Doppler effect).

On Earth, we observe regular changes in the
star’s spectrum.

From these changes we infer the star’s radial
velocity.

Oscillations in the radial velocity are then
attributed to the presence of an exoplanet.

Two main steps in this process:

Detection of periodicity.

Estimation of periodicity (if detection was successful).
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Data and observation design

Our data are (Tn, Y n) comprised of

Tn = (t1, . . . , tn) observation times

Y n = (y1, . . . , yn) radial velocity measurements.

The differences ti − ti−1 are the spacings between observation times.

The distribution pr(Tn) on Tn is the observation design and biases towards summer, night, etc.
Thus, observations usually exhibit deterministic patterns (e.g., 1-day periodicities).

In earlier work, the spacings are assumed either equal or unequal but i.i.d.

We make a more mild assumption:

Tn ⊥⊥ Y n. (A1)
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Detecting periodicity — The periodogram

Standard methods with equal spacings are based on the periodogram (Schuster, 1898). Extension
to unequal spacings by Lomb (1976) and Scargle (1982).

Suppose that the following harmonic model is ground-truth:

yi = ψ∗
1 + ψ∗

2 cos(2πti/θ
∗) + ψ∗

3 sin(2πti/θ
∗) + ε(ti) ≡ yp(ti; θ

∗, ψ∗)︸ ︷︷ ︸
periodic component

+ ε(ti)︸ ︷︷ ︸
error component

.

Here, θ∗ ∈ Θ is the unknown period and (ψ∗
1 , ψ

∗
2 , ψ

∗
3) ≡ ψ∗ ∈ Ψ are nuisance parameters.

Then, the generalized Lomb–Scragle (LS) periodogram is defined as:

An(θ) =
L0n − Ln(θ, ψ̂θ)

L0n
, An : Θ→ R,

where

Ln(θ, ψ) =
n∑
i=1

[yi − yp(ti|θ, ψ)]2/σ2
i . (squared loss / normal likelihood)

ψ̂θ = arg min
ψ∈Ψ

Ln(θ, ψ) (cf. profile likelihood)

L0n =
n∑
i=1

(yi − ȳ)2/σ2
i . (baseline fit).
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Illustration: periodogram from 51 Pegasi b

Fourier power spectrum over periods (1/frequency). Peaks and aliases visible.

But likelihood is non-smooth and multimodal⇒ Problems for inference (coming up).
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Detecting periodicity — Periodogram peak

Main method developed by Fisher (1929). Power refined by (Siegel, 1980; Bolviken, 1983; Chiu,

1989), and extended to more general hypotheses (Juditsky et al., 2015) and sparse alternatives (Cai
et al., 2016).

Most methods rely on the periodogram peak, θ̂n = argmaxθ∈Θ An(θ).

Idea is to reject the null of no periodicity when the peak exceeds a threshold (“false alarm
probability”). See also (Baluev, 2008, 2013; Delisle et al., 2020; Nemec and Nemec, 1985) for
adaptations in astronomy.

Under normality assumptions, each An(θ) is associated to a χ2
2, and so the distribution of θ̂n

(under the null) can be approximated via extreme value theory.

Detection of periodicity is generally robust and poses no major challenges.
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Estimating periodicity

Estimation of periodicity is more involved, however. A common mistake in practice is to

interpret detection of periodicity with θ∗ being “near θ̂n”.

This implicitly relies on standard asymptotics of the form
√
n(θ̂n − θ∗)→ N ...

However, in the harmonic model the typical CLT assumptions are implausible:

Likelihood is irregular, non-smooth and multimodal⇒ Sampling distribution of θ̂n may
substantially deviate from normal!

Observation times are not entirely random⇒ Consistency is not guaranteed.

Other pernicious effects from “hyperparameters” such as the granularity of Θ.

Bayesian methods could resolve these issues? Many reasons why not.. Details
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Example 1: Synthetic data

Let ti = i+ 0.05Ui, i = 1, . . . , 100, and yi = 1.5 cos(2πti/
√
2) + εi, where Ui ∼ Unif[−1, 1]

and εi ∼ N(0, 1) i.i.d. So, θ∗ =
√
2 ≈ 1.414.

Figure: Left: Periodogram from one problematic dataset. Right: Sampling distribution of the periodogram
peak from the same model over 1,000 replications.
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Example 2: Real data from α Centauri B

Take (Tn, Y n) from (Dumusque et.al., 2012). Sample assuming that θ∗ = θ̂n.

Figure: Sampling distribution of periodogram peak on a grid of |Θ| = 10, 000 periods.
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Example 2: Real data from α Centauri B (different Θ)

Take (Tn, Y n) from (Dumusque et.al., 2012). Sample assuming that θ∗ = θ̂n.

Figure: Sampling distribution of periodogram peak on a grid of |Θ| = 2, 000 periods.
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Main method: A global null

We propose to do inference conditional on Tn (and Θ). Start with the following “global null”:

H full
0 : θ∗ = θ0, ψ

∗ = ψ0.

The null implies exact values for the periodic component:

Y
n,p
0 = [yp(t1; θ0, ψ0), . . . , y

p(tn; θ0, ψ0)].

and the errors
εn = Y n − Y n,p0 , where εn = [ε(t1), . . . , ε(tn)].

Thus, we can test H full
0 based on general assumptions on the errors via randomization

tests. Background
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Error invariance

Our inference will rely on certain invariance assumptions on the errors.

Specifically, for any observation times Tn = {t1, . . . , tn}, with n finite, there exists an
algebraic group Gn of n× n matrices such that

g · εn d
= εn | Tn (g ∈ Gn). (A2)

To keep things simple, we assume that Gn = [±]n×n, the set of n× n diagonal matrices with
±1 in the diagonal.

As such, our inference works with any symmetric distribution of independent errors beyond just
Gaussian that is frequently assumed in practice.

This formulation follows the framework of randomization tests (Lehmann and Romano, 2006)

where testing is based on structural rather than analytical assumptions.

Example of “structured inference”. Details
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Testing the global null, H full
0

Define a test statistic Sn = sn(Y, T ) and let sobs = sn(Y n, Tn) denote the observed value in
the sample (e.g., periodogram peak).

To construct the null distribution of Sn, we generate data as follows:

Y n,(i) = Y
n,p
0 +G(i) · (Y n − Y n,p0 ), with G(i) ∼ Unif(Gn).

Then, a p-value for H full
0 is:

pval(θ0, ψ0) = E{sn(Y n,(i), Tn) ≥ sobs}, (2)

where the expectation is with respect to G(i) while Y n, Tn are fixed.

Theorem

Suppose that Assumptions (A1)-(A2) hold. Then, the p-value in (2) is exact in finite samples
under H full

0 , that is, for any finite n > 0,

pr
{
pval(θ0, ψ0) ≤ α | H full

0

}
= α.
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A confidence set for θ∗

However, ψ∗ is usually a nuisance parameter. We may only want to test for θ∗:

H0 : θ∗ = θ0. (3)

We can reject H0 (in a conservative way) by checking maxψ∈Ψ pval(θ, ψ) ≤ α.

This test can also be inverted, in principle, to build a confidence set for θ∗:

Θ1−α =

{
θ ∈ Θ : max

ψ∈Ψ
pval(θ, ψ) > α

}
. (4)

Theorem

Suppose that Assumptions (A1)-(A2) hold. Then, Θ1−α is a finite-sample valid 100(1− α)%
confidence set for θ∗; i.e., for any finite n > 0,

pr(θ∗ ∈ Θ1−α) ≥ 1− α.
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An approximate confidence set for θ∗

Maximizing over Ψ may be expensive. To test H0 efficiently we can just plug in ψ̂θ0 and use
the following p-value:

p̂val(θ0) = E{sn(Ŷ n,(i), Tn) ≥ sobs}, (5)

where

Ŷ n,(i) = Ŷ
p
0 +G(i) · (Y n − Ŷ p

0 ), and Ŷ
p
0 = [yp(t1; θ0, ψ̂θ0 ), . . . , y

p(tn; θ0, ψ̂θ0 )]. (6)

The following construction for the confidence set of θ∗ is valid asymptotically:

Θ̂1−α =
{
θ ∈ Θ : p̂val(θ) > α

}
. (7)

Theorem

Suppose that Assumptions (A1)-(A2) hold, and that ψ̂θ0
p→ ψ∗ under H0. Then, Θ̂1−α is an

asymptotically valid 100(1− α)% confidence set for θ∗; i.e., as n increases

pr(θ∗ ∈ Θ̂1−α) ≥ 1− α+ oP (1).
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Concrete procedure

1 Choose a grid of possible period values, Θ, that contains θ∗ w.p. 1.

Set Θ̂1−α ← ∅. Pick a test statistic, sn.

2 Obtain data (Y n, Tn), possibly after removing known stellar signals, e.g., rotational
periods, magnetic cycles, etc. (Feigelson and Babu, 2012).

3 For all θ0 ∈ Θ do:
(i) Estimate the nuisance parameters, ψ̂θ0 = arg minψ∈Ψ Ln(θ0, ψ), through weighted least

squares.

(ii) Calculate the observed value, sobs, of the test statistic.

(iii) With fixed Tn, sample new data, Y n,(i), where i = 1, . . . , R for some fixed R, by flipping the
signs of residuals.

(iv) Using the samples from 3(iii), calculate the p-value (5), and if it exceeds α then include θ0 in the

confidence set; i.e., set Θ̂1−α ← Θ̂1−α ∪ {θ0} if p̂val(θ0) > α.

4 Return Θ̂1−α as the 100(1− α)% confidence set of θ∗.
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Discussion

Advantages

The confidence set Θ1−α is valid in finite samples. The confidence set Θ̂1−α is
approximately so.

No assumption is made for the test statistic. Not necessary to be “well-behaved” (e.g.,
consistent or normal).

No assumption on the observation design or spacings.

Inference conditional on hyperparameters (e.g., Θ).

Challenges

Choice of test statistic. Details

Computational challenges (procedure requires computation over entire Θ). Details
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Example 1: Synthetic data — What does our method produce?

Let ti = i+ 0.05Ui, i = 1, . . . , 100, and yi = 1.5 cos(2πti/
√
2) + εi, where Ui ∼ Unif[−1, 1]

and εi ∼ N(0, 1) i.i.d. So, θ∗ =
√
2 ≈ 1.414.

θ0 p-value Θ̂0.95 Θ̂0.99
0.1752 0.00 no no
0.1890 0.00 no no
0.2124 0.00 no no
0.2330 0.00 no no
0.2696 0.00 no no
0.3036 0.00 no no
0.3693 0.00 no no
0.4362 0.00 no no
0.5857 0.03 no yes
0.7737 0.17 yes yes
1.4130 0.48 yes yes
3.4175 1.00 yes yes
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51 Pegasi b (Mayor and Queloz, 1995)

θ0 p-value Θ̂0.95 Θ̂0.99
0.3085 0.00 no no
0.5662 0.00 no no
0.8069 0.00 no no
0.8089 0.00 no no
0.8295 0.00 no no
1.3047 0.00 no no
1.3095 0.00 no no
3.7033 0.00 no no
4.1807 0.00 no no
4.2311 1.00 yes yes
4.2821 0.00 no no
4.9331 0.00 no no

Left: Periodogram of radial velocity on exoplanet “51Pegb”. Here, Θ = {0.1, . . . , 1000} is split uniformly in the log-space
so that |Θ| = 25, 000. Right: Inference of periodicity of 51Pegb based on Procedure 1. The table shows the p-values for the
hypothesisH0 : θ∗ = θ0 for values of θ0 that correspond to high peaks of the periodogram shown on the left.

We see that there are no identification issues as the 4.23-day signal is the only one accepted in
the confidence sets.
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Gliese 436 b (Butler et al., 2004)

θ0 p-value Θ̂0.95 Θ̂0.99
0.4200 0.00 no no
0.6155 0.00 no no
0.7067 0.00 no no
0.7438 0.00 no no
1.3641 0.00 no no
1.5187 0.00 no no
1.6013 0.00 no no
1.6086 0.00 no no
1.7008 0.00 no no
2.4103 0.00 no no
2.6441 1.00 yes yes
3.7092 0.0000 no no

Left: Periodogram of radial velocity on exoplanet GJ436b. Here, Θ = {0.1, . . . , 1000} is split uniformly in the log-space so
that |Θ| = 30, 000. Right: Inference of periodicity based on Procedure 1. The table shows the p-values for the hypothesis
H0 : θ∗ = θ0 for values of θ0 that correspond to high peaks of the periodogram shown on the left.

We see that there are no identification issues as the 2.64-day signal is the only one accepted in
the confidence sets.
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α Centauri B (Dumusque et.al., 2012)

θ0 p-value Θ̂0.95 Θ̂0.99
0.7622 0.0705 yes yes
0.8882 0.0271 no yes
1.0086 0.0174 no yes
1.0678 0.0079 no no
2.0292 0.0122 no yes
3.2074 0.0163 no yes
3.2371 1.0000 yes yes
3.2670 0.0178 no yes
7.9394 0.0116 no yes
8.1169 0.0175 no yes

52.2242 0.0121 no yes
61.1334 0.0226 no yes

Left: Periodogram of radial velocity on candidate exoplanet orbiting α Centauri B. Here, Θ = {0.1, . . . , 1000} is split
uniformly in the log-space, so that |Θ| = 10, 000. Right: The table shows the p-values for the hypothesisH0 : θ∗ = θ0 for
values of θ0 that correspond to high peaks of the periodogram shown on the left.

We see that there are severe identification issues as several signals other than the periodogram
peak are accepted in the confidence sets.
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Proxima Centauri (Anglada-Escude et.al., 2016)

θ0 p-value Θ̂0.95 Θ̂0.99
0.1106 0.0007 no no
0.3355 0.0022 no no
0.3552 0.0055 no no
0.4778 0.0025 no no
0.5512 0.0047 no no
0.7532 0.0052 no no
0.8412 0.0059 no no
0.9164 0.0173 no yes
0.9266 0.0005 no no
1.0957 0.0080 no no

11.1739 1.0000 yes yes
12.8769 0.0006 no no

Left: Periodogram of radial velocity on candidate exoplanet Proxima Centauri b. Here, Θ = {0.1, . . . , 1000} split regularly
in the log-space, so that |Θ| = 10, 000. Right: The table shows the p-values for the hypothesisH0 : θ∗ = θ0 for values of
θ0 that correspond to high peaks of the periodogram shown on the left.

We see that there are no severe identification issues. The detection appears to be robust except
for a nuisance signal at 0.9164 days.
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Observation designs

The importance of observation times in identifying a periodic signal is well
understood (Feigelson and Babu, 2012; VanderPlas, 2018; Ivezic et al., 2014).

Surprisingly, there is little (to none) work in the statistical aspects of careful observation design.

Our method makes a contribution to this problem as well. The idea is simply to synthesize data

under alternative designs, and then pick the design that yields “ε-identification”; i.e., Θ̂1−α
only contains values ε-away to a candidate signal θcand∗ .

We address two questions:

1 How much to randomize observation times for ε-identification?

2 How many more observations to make for ε-identification?
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Design (A) Design (B)

(Candidate) Exoplanet
randomness needed

for identification (best δ)
± hrs.

#additional obs. needed

for identification (best n′ − n)
51 Pegasi b 0 0 0

Gliese 436 b 0 0 0

α Proxima B 0.18 4.32 137

Proxima Centauri 0.06 1.44 17

Table: Observation designs (A) and (B) to achieve identification in the exoplanet applications. Design (A) introduces
randomness in the observation times, while design (B) introduces additional observations.

We see that 51Pegb and GJ436b require no improvement in the observation times.

For α Centauri B: We need an additional variation of ±0.18 days around the actual observation
times (i.e., ±4.32 hrs./observation). Alternatively, we need 137 new observations with a
random variation of ±15 mins./observation.

For Proxima Centauri: We need an additional variation of ±0.06 days (i.e., ±1.44
hrs./observation) on the actual observation times. Alternatively, we only need an 17 additional
observations with a random variation of ±15 mins./observation.
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Concluding remarks

We developed a method of set identification for hidden periodicity in unequally spaced

time series. Structured inference approach. Details

This approach is more appropriate than standard methods of statistical inference because
common estimators, such as the periodogram peak, are not well-behaved and may even
be inconsistent.

We validated empirically our method in examples from exoplanet detection using radial
velocity data. Inference appears not to be conservative. It also conclusively raises red flags
for some recent high-profile detections.

Our method suggests ways to improve the observation designs, either by randomizing
observation times or just adding new observations. These designs could help in scheduling
observation times for future discoveries.
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Thank You.

Toulis, P. and Bean, J. (2021). Randomization Inference of Periodicity in Unequally Spaced
Time Series with Application to Exoplanet Detection (working paper)

Toulis, P. (2020). Estimation of Covid-19 prevalence from serology tests: A partial identification
approach. Journal of Econometrics, 220(1), pp. 193-213.
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Bayesian methods?

We might expect that a Bayesian approach could address these issues.

However, a Bayesian approach also faces problems.

(i) Prior specification: uniform priors give preference to parameter regions that not only have
high likelihood but are also wide. This sweeps the identification problem “under the rug”;
see also (Hall and Yin, 2003, Section 1).

(ii) Posterior summarization is challenging when the likelihood is multimodal and
non-smooth. Also affected by hyperparameters (e.g., Θ.)

(iii) Model selection: Bayes factors may strongly depend on features that are esoteric to the
specified models. See also (Gelman and Yao, 2020, Sections 3 and 6).

Go back
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Structured inference

Suppose we want to estimate parameter θ∗ ∈ Θ through a statistic S.

Typical asymptotic approach for inference is to derive a law
√
n(S − θ∗)→ ... and then pivot

to CIs. Relies on asymptotics and usually normality.

However, we can do finite-sample valid inference if we know that

gS
d
= S,

for some transformation g, via inversion of randomization tests.

The simplest case is when we have access to f(S | θ), the distribution of S. Then, we can build
a finite-sample valid confidence set for θ∗ (cf. Neyman construction):

Construct 95% confidence set:

Θ̂ =

θ ∈ [0, 1]3 :
∑
s∈S

I{f(s|θ) ≤ f(sobs|θ)}f(s|θ) > 0.05

 .

In words: “accept all θ for which there is at least 5% of the density mass of f(S|θ) below
f(sobs|θ)”. Outline or Global null
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Comparison with standard methods

For standard methods:

Focus is on f(sobs|θ) as a function of θ (likelihood-centric).

Inference “happens around the mode”, θ̂ = argmaxθ f(sobs|θ). Tails of likelihood are
ignored.

The “hope” is that θ̂ is near θ0. Asymptotics and approximations are necessary.

Many problems (usually undetected) when #samples is small, likelihood is multimodal,
nonsmooth, modes are not separable, etc. (think of exoplanet detection!).

For structured inference methods:

Focus is on f(S|θ) as a function of S or on invariances gS
d
= S.

Inference “happens everywhere” in the parameter space. The likelihood value of f(sobs|θ)
only matters relatively to other values f(S|θ).
No asymptotics or approximations are necessary.

Finite sample guarantee: Works even when #samples is small, likelihood is multimodal,
nonsmooth etc.

Downside: requires computation over entire Θ and possible over S (sample space).
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Illustrative comparison

Go back or Covid-19 application
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Covid-19 serology model

We have two calibration studies and one main study:

observed values

S
−
c = #positives in calibration study out of 401 true negatives s

−
c = 2;

S
+
c = #positives in calibration study out of 197 true positives s

+
c = 178;

Sm = #positives in main study out of 3,330 trials sm = 50.

Assume:

pr(positive result|actual negative) = p [false positive rate]

pr(positive result|actual positive) = q [true positive rate]

# actual positives in main study

3, 330
= π [prevalence]. (8)

Parameter θ = (p, q, π) =∈ [0, 1]3, and statistic S = (S−
c , S

+
c , Sm) ∈ S.

Key observation: We can calculate the density, f(S|θ), of the statistic exactly.
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Covid-19 serology model

Setup: θ = (p, q, π) = (FPR, TPR, prevalence), data S = (S−
c , S

+
c , Sm).

Density of data statistic.

f(S|θ) = Bin(S−
c ; 401, p)︸ ︷︷ ︸

FP in calibration

· Bin(S+
c ; 197, q)︸ ︷︷ ︸

TP in calibration

·
∑
i

Bin(i;Nπ , q) · Bin(Sm − i;N −Nπ , p)︸ ︷︷ ︸
prob of Sm positives out ofNπ actual positives in main study

,

where Nπ = 3300π = #actual positives in main study.

� In the sample, we observe sobs = (2, 178, 50). How to do inference on θ?
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Illustration

Suppose θ0 = (p, q, π) = (1.5%, 100%, 0%). Then, f(S|θ0) looks as follows:

� We have to decide: Is θ0 plausible?
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Application: Santa Clara study

Visualization of (p, q, π) in Θ̂; dashed lines = empirical estimates of FPR, TPR;

Results: π = 0% is included; but [0.7-1.5%] is arguably more plausible.
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Application: New York study

Results: Clear evidence for high prevalence. Go back
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Discussion: Choice of test statistic

Procedure 1 is valid for any choice of the test statistic, sn.

However, power depends on how sensitive sn is in detecting violations of the null hypothesis.

We choose sn(Y n, Tn) = An(θ̂n)−An(θ0), the difference between periodogram values at
the global peak peak and the null, θ0.

Fisher’s classical statistic is sn = maxθ∈Θ Ân(θ)/Ān, where Ān = |Θ|−1
∑
θ An(θ).

Improvements using a trimmed mean in place of Ān have also been suggested (Bolviken, 1983;

Siegel, 1980; Damsleth and Spjotvoll, 1982). See also (McSweeney, 2006) for numerical

comparisons. Go back
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Discussion: Computation

The complexity of our method is, prima facie, O(|Θ|2 ·R · C), where C = time for weighted
least-squares.

e.g., for |Θ| = 104, R = 103, and C = 50µs an analysis on a conventional laptop of a time
series with 200 observation times takes a total of 1,388 hrs. of wall clock time (approx. 58 days).

However, several reductions of computation time are possible.

1 Procedure 1 can be fully parallelized in step 3; e.g., with 100 nodes the wall clock time
thus drops to 14 hrs.

2 Again in step 3, there is no need to consider all values in Θ but only a proportion; e.g.,
consider local peaks that are at least 20% as high as the global peak. This leads to a
complexity O(γ|Θ|2 ·R · C) with γ ∼ 0.1%-3%.

As such, the computation in the above example drops dramatically to approximately 30
mins. of wall clock time. Indeed, in our application, get up to R = 100, 000 and still finish all

analyses in a few hours using a cluster with 400 nodes. Go back
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Randomization Tests (Lehman and Romano, 2005)

Let D ∈ Rn be the data, and Gn a group of Rn × Rn transformations.

We are testing some H0 under which:

D
d
= gD, for all g ∈ Gn.

Define a test statistic Tn = tn(D) and TD = {tn(gD) : g ∈ Gn}. Then,

Tn | TD = Uniform.

To test H0, we could take the p-value of Tn wrt to TD .

∗ This test is (i) exact in finite samples and (ii) works for any choice of Tn.

Go back
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Non-parametric approach (1/2)

Define
Π(T

n
; θ) = {π ∈ Sn : π(ti) ≡ ti(mod θ), i = 1, . . . , n}.

In words, Π(Tn; θ) is the set of permutations of (t1, . . . , tn) such that any time ti is mapped only to an
observation time that is equivalent to ti modulo θ.

We wish to test the following nonparametric null hypothesis of periodicity θ0:

H
np
0 : y

p
(t

′
) = y

p
(t), for all t′, t such that t′ ≡ t(mod θ0). (9)

To testH
np
0 we can adapt Procedure 1 as follows.

1 For all r = 1, . . . , R do:

(i) Sample π ∼ Unif
(
Π(Tn; θ0)

)
.

(ii) Generate synthetic outcome data Y n,(r) = π · Y n obtained by permuting the data Y n according to π while
observation times, Tn, are fixed.

2 Using the samples from 2(ii), calculate the p-value, say pval(θ0), as in (5), and reject if the p-value is less than α.

Theorem

Suppose that Assumptions (A1) and (A2) hold with Gn = Π(Tn; θ0). Then, the p-value from Procedure 2 is

exact underH
np
0 conditionally on the observation times, that is,

pr
{
pval(θ0) ≤ α | Hnp

0 , T
n}

= α.
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Non-parametric approach (2/2)

An alternative approach would be to use the nonparametric estimators of θ∗ developed by (Hall

et al., 2000); (Hall and Li, 2006); (Hall, 2008) together with a variation of Procedure 1 or Procedure 2.

Both these procedures do not require regularity conditions on the observation times but only a
consistent estimator for the periodic component, yp. We leave these directions for future

work. Go back
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