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Setup

We focus on the quintessential regression model:

y = Xβ + ε.

y ∈ Rn is the response; X is the n× p covariate matrix (n > p).

ε ∈ Rn are unobserved errors (no assumption yet).

We wish to do inference on β ∈ Rp with minimal assumptions.
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The standard approaches

Parametric approach:

Posit a model for ε, derive some β̂ (e.g., OLS). Use CLT.

Bootstrap approach:

Resample (y,X) → bootstrap distribution of β̂. Use CLT.

Alternatively: fix X, and resample ε̂ (residuals). This is known as residual
bootstrap (Freedman and Lane, 1983).

Both approaches:

Require some form of exchangeability.

Cannot easily handle complex error structures.

They rely on “nice asymptotic behavior” of β̂.
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What’s wrong with bootstrap?

Nothing, per se. The bootstrap is one of the most important statistical tools.

However, it is based on uniform resampling, and so it does not work in cases with
complex error structure without extensive modifications.

This is why we have the ‘bootstrap zoo’:

residual bootstrap (Freedman and Lane, 1983).

wild bootstrap (Wu, 1986).

cluster wild bootstrap (Cameron, 2008).

block bootstrap (Politis & Romano, 1992).

pigeonhole bootstrap (Owen, 2007).

...

In other words, bootstrap starts with the procedure, then accommodates the particular
error structure.

It should be the other way around!
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Complex error structures

In practice, (regression) errors may have a complex dependency.

Inference is typically based on invariance assumptions on these errors.

Many forms of invariances. Errors may be:

exchangeable (e.g., when generated under identical conditions).

non exchangeable but sign-symmetric.

clustered and independent across clusters but not within.

doubly-clustered.

autocorrelated.

...
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Addressing complex error structures

Our proposal puts the error invariance assumption first. We assume, in particular, that

there is a group of transformations G s.t.

ε
d
= gε | X, for all g ∈ G.

Reminiscent of the “structure of inference” (Fraser, 1960).

Naive bootstrapping no longer works because G may have a complex structure (e.g.,
clustering).

The framework of randomization tests is exactly what we need to proceed (Lehman and

Romano, 2005). Field of active research: (Rosenbaum, 2010), (Imbens and Rubin, 2015),

(Gerber and Green, 2012), (Athey et. al, 2019), (Ding et. al., 2014, 2017), (Canay et. al., 2017,

2019), (Wu and Ding, 2018), (Basse et al., 2019, 2020).
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Some examples of G

Exchangeability: (ε1, . . . , εn)
d
= (επ(1), . . . , επ(n)), where π denotes (random)

permutation. Then,

g =

n∑
i=1

1i1
′
π(i), π ∼ random permutation.

Sign symmetry: (ε1, . . . , εn)
d
= (±ε1, . . . ,±εn). Then,

g =

±1 0
. . .

0 ±1

 =
n∑

i=1

si1i1
′
i, si ∼ random sign.

We can easily derive their properties; e.g., E(G) = 0 and Var(G) = I, for random
signs, where G ∼ Unif(G).
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Randomization Tests (Lehman and Romano, 2005)

Let D ∈ Rn be the data, and G a group of Rn × Rn transformations.

We are testing some H0 under which:

D
d
= gD, for all g ∈ G.

Define a test statistic Tn = tn(D) and TD = {tn(gD) : g ∈ G}. Then,

Tn | TD = Uniform.

To test H0, we could take the p-value of Tn wrt to TD.

∗ This test is (i) exact in finite samples and (ii) works for any choice of Tn.
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Example: permutation test (Fisher, 1935)

Suppose we have iid data D1 ∼ P and D2 ∼ Q. We want to test

H0 : P = Q.

Take G to be the set of permutations of (D1, D2), and choose a test statistic
Tn = tn(D1, D2). [anything that quantifies distance of D1 −D2]

To test H0, compare the observed value of Tn with TD = {tn(D′
1, D

′
2)} where

(D′
1, D

′
2) = g(D1, D2) are derived from permutations of the combined dataset.

Note: The name “randomization test” is somewhat unfortunate. The method does not
only work in randomized experiments, but is more generally applicable.
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Taking this idea further

We extend the randomization test for inference in the model

y = Xβ + ε.

We focus on simple linear hypotheses:

H0 : λ1β1 + . . . λpβp = λ0, or λ′β = λ0, for short.

This includes significance tests, βj = 0. Also leads to confidence intervals via test
inversion.

Our analysis will be conditional on X (as in residual bootstrap).
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Main Idea

Our approach relies on two key ideas:

1 Inferential primitive. We assume:

ε
d
= gε | X, for all g ∈ G,

where G is the inferential primitive, a group of Rn → Rn linear operators. [chosen
by the analyst].

2 Invariant. Test statistic Tn such that for known function tn : Rn → R

Tn
H0= tn(ε).

Then, standard theory of (Lehman and Romano, 2005) suggests that we can test H0 by
comparing Tn with Tε = {tn(gε) : g ∈ G}.
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Promises four main benefits compared to the bootstrap:

1 Address the inference problem in a unified way, while bootstrap typically needs
to be adapted to the task.

2 In particular, the same procedure will be applied to different problems. Only G
needs to be defined for each problem.

3 Does not rely on “nice” asymptotic behavior; e.g., consistency of test statistic is
not required. Leads to weaker conditions.

4 May be valid in finite samples.

BUT...this test is infeasible because ε are unknown.

The feasible procedure needs to rely on residuals, and is approximate.
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Outline

1 Feasible procedure.

2 Main theoretical results on validity.

3 Clustered errors.

4 Two-way clustering.

5 Autocorrelated errors.

6 Conclusion.

7 (extra, if time) High-Dimensional regression. regression.
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Residual Randomization: Concrete procedure

1 Calculate the restricted OLS estimate:

β̂o = argmin
b

||y −Xb||2, such that λ′b = λ0.

Calculate the corresponding restricted residuals, ε̂o = y −Xβ̂o.

2 Test statistic, Tn = (λ′β̂ − λ0), and let Tn = t be the observed value.
Implies tn(u) = λ′(X>X)−1X>u.

3 Generate TR = {tn(Gr ε̂
o) : Gr ∼ Unif(G), r = 1, . . . , R}.

4 Calculate p-value: p̂val = E(TR ≥ t).

At target level α ∈ (0, 1), the test decision is:

φn(y;X) = I{p̂val ≤ α}.
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Example: Hormone data (Efron & Tibshirani, 1996)

Consider the following regression model:

yi︸︷︷︸
hormone_leveli

= β0 + β1 xi︸︷︷︸
hrs_devicei

+εi.

Goal is to do inference on β1 (suppose x̄ = 0).

To test H0 : β1 = b, the residual randomization method:

1 Calculates OLS estimates, β̂0, β̂1.

2 Uses Tn = (β̂1 − b)
H0=

∑
i(εi−ε̄)xi∑

i x2
i

, tn(ε).

3 Calculates restricted residuals ε̂oi = ỹi − ỹi, where ỹi = yi − bxi.

4 Compare Tn with {tn(gε̂o) : ...}.
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Caption. Histogram of p-values for a sequence of tests, H0 : β1 = β0
1 . The horizontal dashed line marks the

0.025 threshold for the two-sides test. The two vertical lines mark the range of values for β1 for which H0

cannot be rejected.
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inference method midpoint estimate s.e. 95% interval

OLS −0.0574 .0045 (−0.0665,−0.0482).

bootstrap −0.0574 .0043 (−0.0660,−0.0488)

G
permutations −0.0573 .0048 (−0.0668,−0.0477)

random signs −0.0595 .0045 (−0.0686,−0.0504)

permutations, within −0.0609 .0043 (−0.0695,−0.0522)

signs, cluster − − −
double −0.0582 0.0050 (−0.0682,−0.0482)

Also, a flexible way for sensitivity analysis by trying many different invariances.

G=“permutations” assumes exchangeable errors;
G= “random signs” assumes error symmetry around zero;
G=“permutations, within” assumes exchangeable errors within clusters defined by the device
manufacturer;
G=“sign, across” assumes error symmetry around zero on the cluster level;
G=“double” assumes both cluster invariances.

17 / 38



18 / 38

Validity

Theorem

Suppose that X>X is invertible, and let G ∼ Unif(G). Suppose also that

E
(
||β̂ − β||2 | X

)[1]

E (Var(tn(Gε) | ε,X) | X)[2]
E(||(X>X)−1X>GX − cI||2)[3] → 0, (1)

for some constant c ∈ R. Then, residual randomization is asymptotically valid under H0, that is,

lim sup
n→∞

E(φn(y;X)|H0) ≤ α.

Under standard conditions, Equation (1) is O(1/n).

Term [2] depends on the “complexity” of G. Inference will break down if G is not
“complex enough” (e.g., permutes only 2 elements instead of n).

Term [3] requires G not to change the “information structure” by much.

In Term [1], consistency/normality of β̂ is not necessary!
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Comparison to bootstrap

The “bootstrap principle” is that
√
n(β̂∗ − β̂) has same distribution as

√
n(β̂ − β).

So, “good asymptotic” behavior of β̂ is required, in general.

For instance, to do valid residual bootstrap in our setting, Freedman (1981) requires:

1 ε1, . . . , εn ∼ i.i.d., with mean 0 and finite variance σ2.

2 (1/n)X>X → V , where V is positive definite.

In residual randomization, validity depends on the interaction between G and the

estimator β̂. Indeed,

- β̂ may not be
√
n-consistent.

- (1/n)X>X may not even converge.
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Robustness

Theorem

Let G,G1, G2 ∼ Uniform(G), i.i.d. Suppose that:

1 E
(
||β̂ − β||2 | X

)
� E (Var(tn(Gε) | ε,X) | X). [Terms [1] and [2].]

2 FΛ̄n
(ε) = O(εγ), where Λ̄n =

|Λn|
Var(Λn)1/2

with Λn = tn(G1ε)− tn(G2ε).

3 E(||(X>X)−1X>GX − cI||2) = O(c2n) with cn ↓ 0. [Term [3].]

Then,

E(φn(y;X) | H0) = α+AγO(c
2γ/(2+γ)
n ),

where Aγ = O(R4/(2+γ)).

Condition 2 requires that the distribution of the test statistic does not “degenerate
too fast”; e.g., it would be a problem if tn(G1ε) = tn(G2ε) w.h.p.

Under regular conditions, rate to validity is O(n−1/3).

Term Aγ shows that increasing the number of randomization samples (R) has a
negative impact on the rate.
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Clustered errors

In many problems the datapoints are clustered. Usually, the errors are assumed
independent across clusters, but possibly correlated within.

There are numerous “cluster-robust” error methods but they rely heavily on
asymptotics, and have problems with small samples and non-normality.

“Cluster wild bootstrap” (Cameron et al, 2008) is an alternative but works only under
strict conditions; cannot be easily extended (e.g., to “two-way clustering”).

With J clusters and m units/cluster, the idea is to:

1 Split the residuals in clusters: {(e11, . . . , e1m), . . . , (eJ1, . . . , eJm)}.
2 In a wild bootstrap scheme, flip the signs on the cluster level:

{+(e11, . . . , e1m), . . . ,−(eJ1, . . . , eJm)}
{+(e11, . . . , e1m), . . . ,+(eJ1, . . . , eJm)}
{−(e11, . . . , e1m), . . . ,−(eJ1, . . . , eJm)}

. . . (1)
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Which invariance works here?

Residual randomization offers a natural way of inference.

Just assume an invariance on the cluster level.

i.e., define G as:

permutations within clusters.

sign flips across clusters.

both operations; etc.
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Example: Clustered errors

Consider the following regression model:

yi = −1 + 0.2xi + εi,

where xi = i/n, and

εi ∼

{
N(0, 0.12) if xi ≤ 0.9

N(0, 52) if xi > 0.9.

Two clusters for the errors. One has much higher variance than the other.

The 95% confidence interval from OLS (with n = 200), is:

> confint(lm(y ~ x))
2.5 % 97.5 %

X -0.88 0.50

OLS fails badly to detect significance.
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Residual randomization with two clusters

Define G = {“as permutations within each cluster”}. (assume known clustering)

The p-value plot is shown below:
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The (inverted) 95% CI is much better centered than regular OLS.
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Validity under clustered errors

“HA” is a homogeneity condition that, in the limit, for every cluster c:

(X>X)−1X>DcX → bcI,

where Dc is diagonal with 1 only for the units in cluster c.

Canay et.al. (2017) showed that under HA the cluster wild bootstrap is asymptotically
valid when Jn < ∞. But this is generally a strong assumption.

Residual randomization does not require HA for validity.
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Finite-sample validity

Suppose that:

1 The errors are sign symmetric across clusters (as defined earlier).

2 Finite-sample HA holds; i.e., for every cluster c it holds that

X>
c Xc ∝ X>X,

where Xc is covariate matrix in the cluster.
[Important: The clustering may be chosen by the analyst.]

Theorem (Summary)

The cluster-sign residual randomization test (based on Gs) is finite-sample exact under
conditions 1 and 2.

Proof sketch: The difference between tn(gε̂o)− tn(ε) is average of terms

λ′(X>
c Xc)

−1(X>X)(β̂ − β) ∝ λ′β̂ − λ0
H0= 0,
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Example: Behrens-Fisher problem

Angrist and Pischke (2009) and Imbens and Kolesar (2016) studied the following problem:

yi = β0 + β1di + εi,

where di is binary (treatment or control), and Var(εi) = diσ
2
1 + (1− di)σ

2
0 .

There are n1 =
∑

i di = 3 treated units, and n0 = 27 controls.

This is an instance of the Behrens–Fisher problem. Standard t-test does not work here
because σ2

0 , σ
2
1 are unknown.

No good methods available. Also, very small sample creates problems.

Here, an exact residual randomization test is possible!
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Example: Behrens-Fisher problem

Split units in three clusters, each cluster 1 treated unit and 9 controls:
(treated, control) = (1, 9), (1, 9), (1, 9).

1. Assume sign-symmetric errors across clusters.

2. For every cluster c, matrix X>
c Xc only depends on proportion of treated units,

which is the same for every c = 1, 2, 3, by construction!

So, X>
c Xc ∝ X>X as required.

Note: The resulting randomization test is a cluster sign test with 3 clusters.
Thus, minimum p-value is 1/8 = 0.125, and so we need to tweak the test (randomize
the decision sometimes) to bring it down to 0.05.
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Panel (A). True β1 = 0.0

Error type, εi
normal t3 mixture

Control standard deviation, σ0
Method 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

BM 0.050 0.028 0.010 0.002 0.034 0.015 0.004 0.000 0.252 0.225 0.034 0.003

r-sign 0.095 0.012 0.000 0.000 0.067 0.012 0.001 0.000 0.213 0.010 0.001 0.000

r-exact 0.048 0.052 0.052 0.050 0.055 0.057 0.054 0.049 0.050 0.046 0.058 0.049

Panel (B). True β1 = 1.0

Method 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

BM 0.215 0.161 0.069 0.008 0.146 0.086 0.028 0.003 0.122 0.130 0.119 0.009

r-sign 0.448 0.149 0.007 0.000 0.270 0.065 0.003 0.000 0.214 0.122 0.004 0.000

r-exact 0.124 0.116 0.111 0.073 0.098 0.101 0.081 0.062 0.094 0.083 0.093 0.073

Panel (C). True β1 = 2.0

Method 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

BM 0.553 0.511 0.359 0.049 0.418 0.332 0.166 0.016 0.326 0.310 0.183 0.055

r-sign 0.899 0.632 0.090 0.000 0.655 0.290 0.032 0.000 0.978 0.673 0.070 0.001

r-exact 0.172 0.177 0.168 0.119 0.147 0.145 0.131 0.089 0.197 0.197 0.173 0.127

Table: Rejection rates of cluster sign test (r-sign), and exact randomization test (r-exact) for the
Behrens–Fisher problem. “BM” refers to an adjusted t-test proposed by Imbens and Kolesar
(2016) based on the bias correction method of McCaffrey and Bell (2002).
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Two-way (or multi-way) clustering

In many problems there are more than two clusters; e.g., (school, classroom), (state,
city), (firm, department), etc. “Dyadic regression” falls in this setting.

There are certain variants of “cluster-robust” error methods that have been extended to
two-way clustering (Cameron et al, 2011). Other approaches include (Davezies et.al.,

2018), (Menzel, 2017), (McKinnon et.al., 2017).

These methods heavily rely on asymptotics, and may give invalid estimates (e.g.,
non-positive definite covariance estimates).

In addition, the underlying assumptions are restrictive; e.g.,

- McKinnon et.al. (2017) require that the majority of “cells” become empty in the limit.
- (Davezies et.al., 2018) requires that the number of both types of clusters tends to infinity.
- (Menzel, 2017) focuses on estimating marginal expectations and not regression.
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Which invariance works here?

Residual randomization can be applied naturally in this setting.

A reasonable assumption is “exchangeability within each individual cluster”.

i.e., define G = “permutations of entire rows or entire columns”.
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Example: Dyadic regression

Suppose that datapoint i is in “row-cluster” r(i) and in “column-cluster” c(i).

Consider the dyadic regression model:

yi = β0 + β1|xr(i) − xc(i)|+ εi.

For the residual randomization test:

1 Fit constrained OLS and calculate restricted residuals ε̂o.

2 Arrange the residuals in rows and columns.

3 At every resampling, permute ε̂o row-wise and/or column-wise.

4 Use new set of residuals to generate new y and re-fit OLS.

5 Produce the p-value as usual.
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Panel (A). True β1 = 1.0

Error-covariate, (εi, xi)

(normal, normal) (normal, lognormal) (mixture, normal) (mixture, lognormal)

Sample size, n

100 625 2500 100 625 2500 100 625 2500 100 625 2500

HC .320 .167 .118 .392 .330 .238 .322 .172 .131 .437 .414 .311

2way robust .090 .061 .046 .114 .091 .062 .080 .041 .050 .101 .091 .057

RR .060 .057 .052 .047 .055 .045 .053 .037 .057 .053 .057 .050

Panel (B). True β1 = 1.2

100 625 2500 100 625 2500 100 625 2500 100 625 2500

HC .363 .279 .359 .488 .616 .734 .360 .267 .279 .470 .543 .675

2way robust .150 .537 .981 .301 .788 .997 .144 .524 .983 .286 .775 .997

RR .075 .134 .252 .155 .372 .609 .079 .144 .245 .157 .390 .601

Table: Rejection rates for HC2 robust errors, two-way robust errors (bootstrap), and the double
permutation test in dyadic regression study. Null hypothesis is H0 : β1 = 1.0.
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Autocorrelated errors

In panel data, the errors may be autocorrelated:

yt = x′
tβ + εt.

For example, we may have εt = ρtεt−1 + ut, where ut is iid noise, and ρt ∈ (0, 1)
may be non-stationary.

There are several “HAC” methods in the literature for such models (White et al, 1980;

Andrews, 1991). Generally they are not robust as they are extensions of “HC” methods
with stronger assumptions.

Problems with heavy-tailed data, non-normality, and/or small samples.
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Which invariance works here?

Standard invariance concepts do not work here due to serial dependence.

However, for the AR(1) process:

εt
d
= −εt | {εt−1 = 0}.

The error series can be reflected around the time axis!
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t0 t1 t2

residual plot

t

We can reflect the residuals between the endpoints tj . Call this Gref.
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The “reflection” randomization test

1 Calculate the restricted residuals, ε̂o.

2 Order their absolute values, |ε̂o|, and select the J + 1 smallest values. Denote the
corresponding timepoints as t0, ..., tJ .

3 Define the clustering, {{t0, ..., t1}, {t1 + 1, ..., t2}, ..., {tJ−1 + 1, tJ}}.

4 Perform the cluster sign test based on the clustering from step 3.

+ Does not rely on normality.

+ Can work with non-stationary series.

+ Good empirical performance.
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Panel (A): ρ = 0.3

Error εt = ρεt−1 + ut, ut = ...

normal mixture

Covariates xt

iid autocorrelated iid autocorrelated

Method (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

OLS 0.052 0.054 0.073 0.078 0.053 0.050 0.073 0.071

HAC 0.066 0.112 0.065 0.112 0.066 0.145 0.070 0.130

reflection test, uncond. 0.031 0.030 0.034 0.034 0.045 0.048 0.042 0.042

reflection test, cond. 0.051 0.048 0.054 0.055 0.053 0.057 0.050 0.049

Panel (B): ρ = 0.8

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

OLS 0.048 0.048 0.341 0.339 0.049 0.050 0.336 0.346

HAC 0.050 0.087 0.104 0.128 0.053 0.097 0.102 0.141

reflection test, uncond. 0.022 0.023 0.024 0.027 0.031 0.029 0.032 0.030

reflection test, cond. 0.049 0.052 0.055 0.061 0.053 0.050 0.052 0.051

Table: Rejection rates for OLS, HAC errors, and the reflection test.
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Example: Complex panel data

Suppose panel data

yit = x′
itβ + εit,

where

xit = ρ1xi,t−1 + LN is autocorrelated with log-normal errors.

εit = ρ2εi,t−1 + ηi +N is autocorrelated with random “firm effect” and normal
errors.

What method to use here?

We can use Gref on (εit − ε̄i·) because of AR structure.

We can also permute εit with respect to i if ηi are exchangeable.

Simulated study with 5 firms, 200 timepoints, ρ1 = ρ2 = 0.8, ηi ∼ t5:

OLS HAC RR(uncond.) RR(cond.)
37.55 11.95 2.56 4.83

Code: https://www.dropbox.com/s/kaegbx29bgwc9k4/temple_WF.zip?dl=0
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Concluding remarks

Residual randomization addresses inference in regression models with complex
error structure.

It does so in a unified structure. Good practice: first think about invariances, then
do inference. The method is valid (asymptotically) in many settings.

In extensive simulations, the method performs favorably to established bootstrap
variants, and “robust error” methods.

Extensions to models with autocorrelated errors (and high-dimensional regression)
are also considered with notable empirical success.
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Thank You.

“Life After Bootstrap: Residual Randomization Inference in Regression Models”
(working paper, 2019)

“Introduction to Residual Randomization: The R Package RRI”
(Technical report, 2019)

https://www.ptoulis.com/residual-randomization
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Extensions: High-dimensional regression

Consider the ridge estimator, β̂ridge. We can show that:

λ′β̂ridge − λ0 + µλ′P−1
µ β = λ′P−1

µ X>ε,

where Pµ = X>X + µI is the ridge matrix.

1. Thus, we can isolate the right term as our invariant:

tn(ε) = λ′P−1
µ X>ε,

2. and consider the left term as our test statistic,

Tn = λ′β̂ridge − λ0 + µλ′P−1
µ β̂

For β̂ we can either plug-in the ridge estimate or some LASSO estimate.

The rest of the procedure remains the same, and can handle (ostensibly) complex error
structures. See paper for detailed experiments.
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