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Motivation: reducing absenteeism at school

Roger and Feller (2016) ran a two-stage randomized experiment, aiming
to engage parents of a student who was frequently absent from school.
Data indicated strong primary effect for targeted student.
Also some positive spillovers to siblings of the targeted student.

2 / 25



Two-stage randomization

3 / 25



Two-stage randomization

3 / 25



Two-stage randomization

3 / 25



Talk summary

Contribution: construct powerful randomization tests of primary and
spillover effects of such interventions by flexible conditioning mechanisms.

Methodology: The concept of conditioning mechanism extends classical
conditional randomization tests to cases where

treatment levels are interdependent and cannot be freely permuted;
and where the conditioning events have to overlap for more power.

Application: For the two-stage design in our application we can derive
conditioning mechanisms that can be described as classical permutation
tests, but with subtle twists.
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Related work

Two-stage randomization: Economics (Crépon et al., 2013), Education
(Somers et al., 2010), Political Science (Sinclair et al. 2012), Public Health
(Hudgens and Holloran 2008).

Estimation with Interference: Sobel (2006), Hudgens and Halloran
(2008), Toulis and Kao (2013), Rigdon and Hudgens (2015), Kang and
Imbens (2016), Aronow and Samii (2017), Basse and Feller (2017).

Testing: Aronow (2012), Rosenbaum (2007), Bowers et. al. (2013), (Athey
et.al., 2016).
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Notation

Unit = student; Household = collection of students (siblings).
Indexing: i = unit, j = household.
Rij = 1 is unit i is in j household; 0 otherwise.
Treatment: Zi ∈ {0, 1} = treatment of unit i; Z = (Zi).
Design: p(Z) = unif. over set where we treat half of households, and
at most one unit per household.
Outcomes: Yi(Z) = outcome of unit i under assignment Z.

♠ Derived notation:
Wj =

∑
i ZiRij = treatment of household j (either 0 or 1).

[i] =
∑

j jRij = household where unit i resides.
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Interference

We usually assume only two outcomes for unit i, namely Yi(0), Yi(1).
But this relies on no interference assumption (Cox, 1958).

Frequently, the outcome of a unit may depend on treatment of others!
� e.g., I watched the movie because my friend saw the movie ad and told

me about it;
� student gets message about absenteeism affecting educational outcomes

of siblings.
When interference is present, outcome is better denoted by Yi(Z).

No interference assumption (SUTVA, Rubin, 1974)

Yi(Z) = Yi(Z
′) if Zi = Z ′

i;

⇒ implies only two potential outcomes for unit i, namely Yi(0), Yi(1).
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Our interference assumptions

In our application, we assume that the outcome of a unit may depend
only on its treatment and the treatment of the household; formally,

Yi(Z) = Yi(Z
′) if Zi = Z ′

i and W[i] = W′
[i].

Consequently,

Yi(Z) ≡


Yi(1, 1) = treated unit in treated household.
Yi(0, 1) = control unit in treated household.
Yi(0, 0) = control unit in control household.
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Causal effects

Causal primary effect for unit i can be defined as

Yi(1, 1)− Yi(0, 0).

Causal spillover effect can be defined as:

Yi(0, 1)− Yi(0, 0).

But how to test for such causal effects...?

A very powerful idea that makes no modeling assumptions and uses
only the available information from the design is that of
randomization tests.
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Classical randomization test for causal effects

Working with Darwin’s data RA Fisher wanted to compare the effects of
self-fertilization with cross-fertilization on plant height – the problem is that
there are missing data.

Z = Cross Z = Self

unit treatment
cross-fertilized self-fertilized

1 15 ?
2 ? 20

Fisher noted that under the null hypothesis of no difference between
treatments, we can fill in the missing data:

Heighti(self-fertilization) = Heighti(cross-fertilization).
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But how to test?

Working with Darwin’s data RA Fisher compared the effects of
self-fertilization with cross-fertilization on plant height.

Z = Cross Z = Self

unit treatment
cross-fertilized self-fertilized

1 15 15
2 20 20

Fisher noted that under the null hypothesis of no difference between
treatments, we can fill in the missing data:

Heighti(self-fertilization) = Heighti(cross-fertilization).

The null hypothesis is sharp because it allows imputation of missing
outcomes, and thus randomization-based inference. 11 / 25



Randomization-based inference through Fisher test

1 Pick a test statistic T (Z|y) that is a reasonable estimate of the causal effect
of interest (y = observed data) – could actually rely on a model!

� e.g., difference in means between treated and control units:

T (Z|y) = 1∑
i Zi

∑
i

Ziyi −
1∑

i 1− Zi

∑
i

(1− Zi)yi

2 Calculate observed value T obs = T (Zobs|y).
3 For m = 1, 2, . . .:

(i) Sample Z ∼ p(Z) according to design.
(ii) Store Tm = T (Z|y).

4 Calculate p-value = E
(
I{Tm ≥ T obs}

)
.

Z = Cross Z = Self Notes:
No model assumption on outcomes (actually outcomes y are assumed fixed).
Randomness comes only from design (which we control!).
Step 3(ii) is only possible because hypothesis is sharp, since

T (Z|Y (Z)) = T (Z|y), for all Z.
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Fisher test in our setting: simple case
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The problem with interference: testing primary effect
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Problem with interference

Null hypothesis (of no primary effect) is not sharp ⇒ cannot fill in all
potential outcomes!

� Here, we have three levels of treatment: treated, exposed, and control;
but null hypothesis of primary (or spillovers) claims the equality of only
two of them, and says nothing about the third.

Treatment levels depend on each other – unrestricted permutation in
the randomization test is not possible.

� e.g., cannot have a control unit and an exposed unit both in the same
household, by assumption.

Need to use conditional testing. In particular,
� Work with a subset of units – called focal units by Athey et.al. (2016).
� Resample within a subset of assignments.
� Use a test statistic defined only on focal units.
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Our methodology in practice: testing primary effect
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Our methodological contribution

1 Sample F = set of units such that every unit in F is exposed to the
treatment levels in H0 under Zobs – the focal set.

2 Calculate Z = set of assignments for which we can impute missing
outcomes under H0 for all i ∈ F .

3 The pair C = (F ,Z) is the conditioning event.
4 Calculate T obs = TC(Z

obs|y), defined only on units in F .
5 In the randomization test conditional on C:

(i) Sample Z ′ ∈ Z proportional to probability p(Z ′) from design.
(ii) Store Tm = TC(Z

′|y).

6 p-value = E
(
I{Tm ≥ T obs}

)
.

♠ A conditioning mechanism M is formally defined by a set of conditioning events
and a probability distribution p(Z, C). The tuple (H0,M, T ) is a (generalized)
conditional randomization test.
♠ In the paper, we show in detail some sufficient properties for M and T wrt to the
null hypothesis, H0, in order to have a valid conditional test.
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Why it works

Our test operates conditional on an event C = (F ,Z).
To perform the test we simply need to adjust the resampling
distribution:

p(Z|C) ∼ p(C|Z) · p(Z). (1)

p(Z) is the design and may not be under our control.
But p(C|Z) is defined by the conditioning mechanism.

� Certain properties need to hold for p(Z, C) and the test statistic to have
a valid test (in the paper).

♠ Pros and cons:
Under (1) the test statistic TC(Z|y) has the correct conditional distribution!

� Flexibility in choosing C to improve on classical conditional
randomization methods, and also achieve optimal power.

Challenging to devise conditioning mechanisms in practice, and compute the
conditional distribution p(Z|C).

⇒ In two-stage randomization it all works out easily!
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Problems with classical conditional tests
(Aronow, 2012); (Athey et.al., 2016)
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Problems with classical tests

Classical conditional tests require that the conditioning events form a
partition of the sample space.
It is then necessary that the focal units are selected independently of
the observed assignment Zobs.

The problem: focal units that are exposed to a treatment not
considered in H0 cannot be used in the test. This leads to loss of
information.

In our framework we can choose the focal units conditional on Zobs.
This way we can maximize the number of focal units and assignments
considered in the test, and thus improve power.
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Simulation – Power for test of no primary effect
We set 500 households with 10 units each.
Outcome model: Yi(1, 1) = Yi(0, 0) + τ , and Yi(0, 0) ∼ N (0, σ2).
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Simulation – Power for test of no spillover effect
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Absenteeism data – distribution of p-values
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Distribution of p-values over choices of focals, for testing Hp
0 (left) and Hs

0 (right).
For primary effect test, conditional focal selection rejects 91% vs 65% for random focals.
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Conclusion

Randomization inference is appealing – makes minimal assumptions.
But hard: interference presents unique challenges.
We build a framework that allows flexible conditioning mechanism,
which can offer significant increase in testing power.
Interference is a great application area for such conditional testing
mechanisms. In two-stage randomization our conditional testing is
simplified to classical permutation tests with restrictions.

Current and future work:
Aggregate p-values over different selections of focals.
Extend to more complicated interference.

Z = Cross Z = Self

Thanks for your attention!
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