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Motivation: reducing absenteeism at school

@ Roger and Feller (2016) ran a two-stage randomized experiment, aiming
to engage parents of a student who was frequently absent from school.

@ Data indicated strong primary effect for targeted student.

@ Also some positive spillovers to siblings of the targeted student.
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Todd Rogers,

Todd has been absent 16 days this school year.
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Talk summary

Contribution: construct powerful randomization tests of primary and
spillover effects of such interventions by flexible conditioning mechanisms.

Methodology: The concept of conditioning mechanism extends classical
conditional randomization tests to cases where
@ treatment levels are interdependent and cannot be freely permuted;

@ and where the conditioning events have to overlap for more power.

Application: For the two-stage design in our application we can derive
conditioning mechanisms that can be described as classical permutation
tests, but with subtle twists.
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Unit = student; Household = collection of students (siblings).
Indexing: ¢ = unit, j = household.

R;; =1 is unit ¢ is in j household; 0 otherwise.

Treatment: Z; € {0,1} = treatment of unit i; Z = (Z;).

Design: p(Z) = unif. over set where we treat half of households, and
at most one unit per household.

Outcomes: Y;(Z) = outcome of unit ¢ under assignment Z.
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Indexing: ¢ = unit, j = household.

R;; =1 is unit ¢ is in j household; 0 otherwise.

Treatment: Z; € {0,1} = treatment of unit i; Z = (Z;).

Design: p(Z) = unif. over set where we treat half of households, and
at most one unit per household.

Outcomes: Y;(Z) = outcome of unit ¢ under assignment Z.

& Derived notation:
W; =3, ZiR;; = treatment of household j (either 0 or 1).
[i] = >_; jRi; = household where unit i resides.
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Interference

@ We usually assume only two outcomes for unit 4, namely Y;(0), Y;(1).

@ But this relies on no interference assumption (Cox, 1958).
@ Frequently, the outcome of a unit may depend on treatment of others!

O e.g., | watched the movie because my friend saw the movie ad and told
me about it;

O student gets message about absenteeism affecting educational outcomes
of siblings.

@ When interference is present, outcome is better denoted by Y;(Z).
No interference assumption (SUTVA, Rubin, 1974)
Yi(Z) = YilZ') i Z = 7

= implies only two potential outcomes for unit 7, namely Y;(0), Y;(1).



Our interference assumptions

@ In our application, we assume that the outcome of a unit may depend
only on its treatment and the treatment of the household; formally,

Yi(Z) = Yi(Z') if Z; = Z] and W) = W,
o Consequently,
Y;(1,1) = treated unit in treated household. @ Treated

Yi(0,1) = control unit in treated household. © Exposed
Y;(0,0) = control unit in control household. (O control



Causal effects

@ Causal primary effect for unit i can be defined as
Yi(1,1) - ¥;(0,0).

o Causal spillover effect can be defined as:
Y;(0,1) - Yi(0,0).

@ But how to test for such causal effects...?



Causal effects

Causal primary effect for unit 7 can be defined as

Y;(la 1) - Yi(07 O)'

Causal spillover effect can be defined as:

But how to test for such causal effects...?

A very powerful idea that makes no modeling assumptions and uses
only the available information from the design is that of
randomization tests.



Classical randomization test for causal effects

@ Working with Darwin’s data RA Fisher wanted to compare the effects of
self-fertilization with cross-fertilization on plant height — the problem is that
there are missing data.

So e
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But how to test?

@ Working with Darwin's data RA Fisher compared the effects of
self-fertilization with cross-fertilization on plant height.

So @

L 1 L 1
~Z=Cross’ ~ Z=self ’

unit treatment
cross-fertilized  self-fertilized
1 15 15
2 20 20

@ Fisher noted that under the null hypothesis of no difference between
treatments, we can fill in the missing data:

Height, (self-fertilization) = Height, (cross-fertilization).

@ The null hypothesis is sharp because it allows imputation of missing
outcomes, and thus randomization-based inference. s



Randomization-based inference through Fisher test

@ Pick a test statistic 7'(Z|y) that is a reasonable estimate of the causal effect
of interest (y = observed data) — could actually rely on a model!
O e.g., difference in means between treated and control units:

1
T(Zly) = Z 7 Z Yi — mzz:(l
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@ Pick a test statistic 7'(Z|y) that is a reasonable estimate of the causal effect
of interest (y = observed data) — could actually rely on a model!
O e.g., difference in means between treated and control units

1
T(Zly) = Z 7 Z Yi — m;(l

@® Calculate observed value T°° = T(Z°|y).
© Form=1,2,...

(i) Sample Z ~ p(Z) according to design.
(ii) Store T,,, = T(Z|y).

@ Calculate p-value = E (H{Tm > Tobs})_

Re ¢
= % Notes:

@ No model assumption on outcomes (actually outcomes y are assumed fixed)

@ Randomness comes only from design (which we control!)

@ Step 3(ii) is only possible because hypothesis is sharp, since

T(Z|Y(Z)) =T(Z|y), for all Z.
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Fisher test in our setting: simple case

H*™ 1 Y,;(1,1) = Yi;(1,0) = Y3;(0,0) «— «—
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Fisher test in our setting: simple case
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Fisher test in our setting: simple case

. @@@ @. @@-;—’T(Z“))=1.14
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obs  ob.
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The problem with interference: testing primary effect
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Problem with interference

@ Null hypothesis (of no primary effect) is not sharp = cannot fill in all
potential outcomes!
O Here, we have three levels of treatment: treated, exposed, and control;
but null hypothesis of primary (or spillovers) claims the equality of only
two of them, and says nothing about the third.
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Problem with interference

@ Null hypothesis (of no primary effect) is not sharp = cannot fill in all
potential outcomes!

O Here, we have three levels of treatment: treated, exposed, and control;
but null hypothesis of primary (or spillovers) claims the equality of only
two of them, and says nothing about the third.

@ Treatment levels depend on each other — unrestricted permutation in
the randomization test is not possible.

O e.g., cannot have a control unit and an exposed unit both in the same
household, by assumption.

@ Need to use conditional testing. In particular,
O Work with a subset of units — called focal units by Athey et.al. (2016).
O Resample within a subset of assignments.
O Use a test statistic defined only on focal units.
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Our methodology in practice: testing primary effect

Testing Hj Step 0:

(no primary effect) IOOI IOOI IOOI IOOI
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Testing H Step 0:

(no primary effect) IOOI IOOI IOOI IOOI

Step 1a:

assign treatment Z°b¢ I_. @l I_. @I I @ @I I @ @ I
(random)

Step 1b:

choose focals F(z¢*) . @ | . @I I @ I I @ I |:| = focal unit

(random)

1) every treated unit is focal
I
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each control household H
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Our methodology in practice: testing primary effect

Testing H Step 0:

(no primary effect) IOOI IOOI IOOI IOOI

Step 1a:

assign treatment Z°b¢ I_. @l I_. @I I @ @I I @ @ I
(random)

Step 1b:

choose focals F(z¢*) . @ | . @I I @ I I @ I |:| = focal unit

(random)

1) every treated unit is focal
I

2) pick one focal at random in
each control household H

Basic Fisher Test

complete
randomization:
Ni=2, No=2

p-value(Z°bs, F)
16 /25
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@ Sample F = set of units such that every unit in F is exposed to the
treatment levels in Hy under Z°PS — the focal set.
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Our methodological contribution

@ Sample F = set of units such that every unit in F is exposed to the
treatment levels in Hy under Z°PS — the focal set.

® Calculate Z = set of assignments for which we can impute missing
outcomes under Hy for all i € F.

©® The pair C = (F, Z) is the conditioning event.
O Calculate T°% = T (Z°y), defined only on units in F.

@ In the randomization test conditional on C:
(i) Sample Z' € Z proportional to probability p(Z’) from design.
(ii) Store T, = Tc(Z'y).

@ p-value = E (I{T}, > T°>}).

& A conditioning mechanism M is formally defined by a set of conditioning events
and a probability distribution p(Z,C). The tuple (Ho, M, T) is a (generalized)
conditional randomization test.

& In the paper, we show in detail some sufficient properties for M and T" wrt to the
null hypothesis, Ho, in order to have a valid conditional test.
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@ Our test operates conditional on an event C = (F, Z).

@ To perform the test we simply need to adjust the resampling
distribution:

p(Z|C) ~ p(C|Z) - p(Z). (1)

@ p(Z) is the design and may not be under our control.
@ But p(C|Z) is defined by the conditioning mechanism.

O Certain properties need to hold for p(Z,C) and the test statistic to have
a valid test (in the paper).
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@ Our test operates conditional on an event C = (F, Z).

@ To perform the test we simply need to adjust the resampling
distribution:

p(Z|C) ~ p(C|Z) - p(Z). (1)

@ p(Z) is the design and may not be under our control.
@ But p(C|Z) is defined by the conditioning mechanism.

O Certain properties need to hold for p(Z,C) and the test statistic to have
a valid test (in the paper).

& Pros and cons:

@ Under (1) the test statistic 7¢(Z]y) has the correct conditional distribution!

O Flexibility in choosing C to improve on classical conditional
randomization methods, and also achieve optimal power.
@ Challenging to devise conditioning mechanisms in practice, and compute the
conditional distribution p(Z|C).

= In two-stage randomization it all works out easily!
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Problems with classical conditional tests

(Aronow, 2012); (Athey et.al., 2016)
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Problems with classical conditional tests

(Aronow, 2012); (Athey et.al., 2016)

Testing 1 Step 0: IOOI IOOI IOOI IOOI

(no primary effect)

Step 1a:

assigntreatmer;t Z0bs E. @ I E. @I I @ @I I @ @ I
(random)
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Problems with classical conditional tests

(Aronow, 2012); (Athey et.al.

Testing Hj Step 0:
(no primary effect)

Step 1a:
assign treatment Z°»
(random)
Independently
Step 1b:

choose focals F
(random)

i
i
! 0) pick one focal at random in |
I

each household

Basic Fisher Test

complete
randomization:
Ni=1, No=2

, 2016)

LOO] [OO] [OO] [OO]

(0®] [ @] [O®] [@®]

D = focal unit

p-value(Z°, F)
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Problems with classical tests

o Classical conditional tests require that the conditioning events form a
partition of the sample space.

@ It is then necessary that the focal units are selected independently of
the observed assignment Z°bs.



Problems with classical tests

o Classical conditional tests require that the conditioning events form a
partition of the sample space.

@ It is then necessary that the focal units are selected independently of
the observed assignment Z°bs.

@ The problem: focal units that are exposed to a treatment not
considered in Hy cannot be used in the test. This leads to loss of
information.

@ In our framework we can choose the focal units conditional on Z°b.
This way we can maximize the number of focal units and assignments
considered in the test, and thus improve power.



Simulation — Power for test of no primary effect

We set 500 households with 10 units each.
Outcome model: Y;j(1,1) = Y;(0,0) + 7, and Y;(0,0) ~ N(0,c?).

method
— conditional focals

~— random focals

0.00 025 050 075 1.00
true primary effect
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Simulation — Power for test of no primary effect
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o \/\/\
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Simulation — Power for test of no spillover effect
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Absenteeism data — distribution of p-values

301 | !

20 :
‘g 1 method method
c w [CJconditional focals [CJconditional focals
3 ; [Crandom focals [Crandom focals
10 |{:

0 1

000 025 050 075  1.00 000 025 050 075 100

p-value p-value

Distribution of p-values over choices of focals, for testing H{ (left) and H{ (right).
For primary effect test, conditional focal selection rejects 91% vs 65% for random focals.
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@ Interference is a great application area for such conditional testing
mechanisms. In two-stage randomization our conditional testing is
simplified to classical permutation tests with restrictions.
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